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“And how the One of Time,  

of Space the Three,  

Might in the Chain of Symbols girdled be.”  
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INTRODUCTION 
 
 

VECTOR: It is a strange thing, that time and space should have one and three, and 
there be found a symbolic model like the quaternion to parallel this structure. The 
correspondences are astonishing, to say the least. Space is handed, meaning that one 
can turn about, rotate, or spin, within the three degrees, and a plane mirror turns 
left hand into right hand. So, too, do the quaternion’s imaginary part, with its (i.j.k) 
elements, capture this  feature. And yet, a 3-space constructed with one real and two 
imaginary axes, like (1,i,j) cannot reflect this handed nature. “ Time ” is not 
“orientable” with reference to the spatial dimensions. Symbolically, the quaternion 
says, 1.j = +j.1 and [1,j] = 0, i.e. the axes commute and the commutator vanishes. 
But, for space, we have  that minus sign, i.j = -j.i, and [i.j] = 2k. That minus sign is 
critical for the representation of the rotation. Without it, we cannot rotate! This 
means we must modify the concept of  “a vector.” Hamilton recognized a vector as an 
entity with magnitude and direction; i.e. having just  two  properties. But, a vector, 
to him, was only formed from the three imaginary parts of the quaternion. These 
axes have a “property relation symmetry” among them, that permits of the exchange 
of any two axes and the structure will still have that ability to orient the hand and 
rotate within the space. But, if we were to swap out an imaginary axis, and replace it 
with the real scalar axis of the quaternion, the newly formed 3-space would lose this 
feature. In the special 4-dimensional space of the quaternion, therefore, we cannot 
simply exchange any two axes. Our 4-vector then, must have more than just the two 
properties of magnitude and direction. Each vector has a “property relation” with 
other vectors of the space, in particular, with the defining axis vectors, that restrict 
the kinds of operations that can be performed. For example, if we could rotate the 
scalar axis so that it becomes aligned with a space axis, then a previously commuting 
variable would become anti-commuting, when commutation is then measured 
relative to the remaining unaltered space axes. But, commutation is a discrete 
property, that does not admit of  “degrees of commutation”  between commute and 
anti-commute. So, such an operation is practically impossible. Time cannot become 
spacelike, contrary to some interpretations of Einstein’s relativity, since that would 
imply that the non-orientable measures could become orientable measures, by a 
mere continuous transformation, and then acquire all the additional special 
properties of an orientable measure, such as admitting  handedness and permitting 
rotations.  
 
We must modify the concept of “vector,” therefore, to recognize these “three” 
properties, of magnitude, direction, and orientability.  
 



 
FOUR ELEMENTS: The ancient philosophers recognized the world as being 
constructed from four elements: Fire, Air, Water, and Earth. The condensation of a 
fifth element, some called the Aether, produced all four elements, so that it becomes 
possible to exchange the quantity of that fifth element among the four, and so change 
the proportions of the four elements that are present. That fifth element is not 
directly observable, however, it must be deduced from observations of the changes in 
the four observables. But, the four elements themselves combine to form another 
four elements on a denser level of existence, so that there are really Fires, Airs, 
Waters, and Earths, of differing densities on different planes or levels of manifest 
existence. The physical plane, which we are on, consists of the most dense 
manifestations of the four elements. The astral plane, where the spirit lives,  is one 
step less dense than ours. The Gospel of Thomas  says that “If you do not fast from 
the world, you will not find”:27 this higher world of the spirit, since the senses are 
otherwise overloaded with the denser experiences that drown out the more subtle 
sensations of the higher realm. Once one has tuned out the noise of this lower world, 
however, and “when you make eyes in place of an eye, a hand in place of a hand, a 
foot in place of a foot, an image in place of an image, then you will enter”:22; this 
being an exact duplicate of the physical body, just made with less dense material. 
 
 
On every plane of existence, there are these four elements—as above, so below—
observable to sentient beings within that plane, and every phenomenon that becomes 
manifest to the beings on that plane arises through changes in the ratios of these four 
elements.  To an observer, therefore, his directly experienced universe is describable 
by four continuously changing observable parameters: the plasmic fire element, the 
gaseous element, the liquid element, and the solid element. All sentient experience 
occurs through modifications of these four parameters. These four elements have 
their corresponding psychophysical states, which are experienced within the mind of 
the observer, and by which these four elements get their properties and are 
recognized.  
 
The fire element heats things up and makes things lighter; e.g. hot air rises. The air 
element flows and pushes things around; e.g. the wind blowing and bending the 
trees. The water element makes things feel heavy and fall downward; e.g. like rain, 
water falls. The solid element makes contact possible, through touching and pressing. 
Thus the four elements are experienced as rising, pushing, falling, and pressing. The 
Theravadin Buddhists use this description to explain how a man walks. To walk, lift 
the left foot, push it forward, drop it down, and press on the ground. Repeat with 
the right foot. Thus, walking is lifting, pushing, dropping, and pressing, or, in terms 
of the original elements, it’s fire, air, water, earth. This particular progression of 



transformations of the four elements defines the action of  “walking” on the physical 
plane. This enables a sentient being to move around within the same plane. To move 
between the planes of existence a different progression is required: e.g. earth, water, 
fire, air, moves the being from the physical plane into the astral plane. This 
progression is symbolized by the ritual Buddhist artifact called the stupa or chorten. 
It represents “death” on the denser physical plane, and “birth” into the less dense 
higher plane. That is, the process of dying is experienced as pressing, then feeling 
heavy, suddenly feeling lighter—the snap—and finally moving around on the new 
plane of existence. The same progression is experienced by meditators and out-of-
body travelers, so that the “death” need not be permanent detachment from the 
physical plane. By reversing the progression one re-enters the physical plane or takes 
“birth” in the denser world.  The magic of traversing within or between the planes is 
accomplished by merely “recollecting” the psychophysical experiences in the 
particular order of the progression required for the transformations desired. The 
importance of the “recollecting” is described in the Tibetan Book of the Dead. The 
skill of walking within or between the planes must be acquired by practice. The 
Theravadin begins by going for a walk in the woods, slowing down the actions 
involved in the walking action until he can concentrate his attention on the 
intermediate stages that mark the transitions of the elements involved. This “walking 
meditation,” as it is otherwise called, is practiced until he has mastered the art of 
mentally following this action in sufficient detail that he can then consciously re-
order the elemental transitions by changing the order of psychophysical sensations 
occurring in his mind; i.e. by merely “recollecting” the stages of walking in a 
different order. The physical human body is only designed to give automatic aid to 
walking about within the physical plane, and to voluntarily traverse between the 
planes requires special instruction on that specific art of mental concentration, 
although it may be acquired spontaneously within a specific life owing to the sentient 
being’s practice in a previous existence; i.e. the being may “recollect” his previous 
knowledge. The Yoga Sutras of Patanjali IV:1 describes this acquisition of siddhi 
powers by birth as one of the five methods the skill is obtained. 
 
Another progression makes up the Zodiac, where Aries, Taurus, Gemini, and 
Cancer, etc., correspond to fire, earth, air, and water, and define the experience of 
the seasons of time, development,  growing old, aging, rot and decay; and the 
acquisition and development of knowledge and wisdom within the sentient being. 
The ages begin with fire, condensing to earth, i.e. spiritual beings taking on physical 
forms, coming into contact with new things then bring lots of movement and 
activity, finally ending in the flood. After the diluvian age, things begin again. Many 
cultures record the memory of the global flood in their myths. 
 



QUATERNIONS: If the universe is describable by four measurable observable 
parameters, that exchange a fifth quantity among them in facilitating adjustment  of 

their individual measures, then all phenomena can be modeled by 4 × 4 matrices 
which describe transformations of and among these four parameters, to the extent 
that the phenomena can be explained by “linear transformations.” This is a first 
approximation, only, but a useful one nevertheless. Well, it just so happens, as will 

be shown in the papers included in this text, that every 4 × 4 matrix, T, can be 
represented by combinations of right handed, A, and left handed, B’,  quaternions:   
T = AB’ + AB’ + AB’ + … + AB’; and all linear transformation operations can thus 
be described by sequences of operations on quaternions. This means that, in a world 
constructed from four observable parameters, the quaternions have an unique role to 
play. They can completely describe the transformations in that world, when they are 
linear, and can possibly explain why the four parameters organize their transitions 
among themselves in order that there are such things as handedness and rotation, 
even perhaps time and space, and other peculiarities seen in our world, manifesting 
among the transitions. With this in mind, guiding underlying motivations, the study 
of quaternions is being undertaken. These papers represent the latest important 
results achieved thus far in the author’s researches.  
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HEXPENTAQUATERNIONS :

A Two-Hand Quaternion Algebra

Peter Michael Jack∗

Hypercomplex Systems

Toronto, Canada †

(Dated: January 29, 2006)

We consider the matrix method for solving simple linear quaternion equations, and demonstrate
that such solutions often implicitly involve both left-hand and right-hand basis elements in the
intermediate reckoning. This helps us to construct a more complete quaternion algebra, that simul-
taneously includes both hands, and expands on William Rowan Hamilton’s original four dimensional
idea. We call this algebra Hexpentaquaternions—hexpe numbers—because it is constructed out of
sixteen elements, naturally arranged into five four-dimensional subalgebras–two anti-commuting and
three commuting—including all hypercomplex algebras built on the five groups of order eight. We
then show how, by replacing right hand quaternions with left hand quaternions on the other side of
variables, we can simplify and solve linear quaternion equations, using only elementary methods.

1. AN AMBIGUOUS HAND.

The square-roots of negative unity,
√
−1 = a.i + b.j + c.k (1.1)

with i, j, k, the anti-commuting hypercomplex roots
of −1, and a, b, c, elements of the real number set,
with the property (a2 + b2 + c2) = 1, are Hamilton’s
invention. In his system, the units { i, j, k} represent
space dimensions, as a geometrical interpretation, within
a four-dimensional number q = q0.1 + q1.i + q2.j + q3.k,
where the scalar unit { 1} is simply an extra-dimensional
parameter introduced to enable the algebra to possess
most of the rather simple common rules of arithmetic as
found in ordinary algebra.

These space units { i, j, k} obey the special product
rules given by W. R. Hamilton in 1843[1] [1−];

i2 = j2 = k2 = −1

(1.2)

i = jk = −kj, j = ki = −ik, k = ij = −ji

But, in so defining the units, an ambiguity needs to
be resolved, in regard to that geometric interpretation.
Should the equation, ij = +k, indicate a right-hand
rule, or a left-hand rule? Hamilton called this product
right-hand, but in his application he defined the action
to represent that the turning of a screw with a man’s
right hand, turning clockwise relative to the body as
seen by him, would involve motion of the screw towards
the body of the man [2] [2−] . Today, scientists apply
the exact opposite definition to Hamilton, for that same
rotation motion called right-hand.

∗Alumnus of the Physics Department of Columbia University, NY.
†Electronic address: math@hypercomplex.com

It is obvious that one could just as easily attach
the algebraic form, ij = +k, to the geometric left-
hand, as we now do to the geometric right-hand. A
convention is required. Once the decision is made,
however, then the alternate form, ij = −k, in algebra,
would represent the corresponding opposite form, in
geometry. Thus, by convention, ij = +k, is linked with
the geometric right-hand. While, ij = −k, is linked
with the geometric left-hand. In a right-hand system,
the triple product, ijk = −1. While, in a left-hand
system, this is, ijk = +1. It is sufficient, therefore,
to give the sign on the unit of this triple product ijk
to indicate the handedness established for the under-
lying basis. Those elements can have ij = +k or ij = −k.

Writing down the equation (1.1), therefore, does not
completely specify the solution to the problem of the
square root of −1. The left-hand verses right-hand
ambiguity for ijk still has to be resolved. In the context
of real numbers, the square root of +1 has two possible
solutions; +1 or −1. There is an ambiguity, which is
usually resolved according to the specific nature of the
problem whose solution is being modeled by the real
algebra. In the context of complex numbers, the square
root of −1 has again two solutions; +i or −i. And
again, the specifics of the problem being modeled by the
complex algebraic equation resolves the ambiguity. But,
in the context of quaternions, the square root of −1 has,
not only the obvious two solutions, +(a.i + b.j + c.k)
or −(a.i + b.j + c.k), that correspond to those real and
complex cases, for a given triplet of real numbers (a, b, c),
but quaternions are even more special, in that they
also possess the additional unique dual-hand ambiguous
nature inherent in relations among the basis elements.

Now, Hamilton specifies the hand of the basis
elements, as part of his definition. And in this way,
equation (1.1) appears to be unambiguous. The ij = +k.
The elements form a right-hand system. The convention
is established. But, this is the same kind of decision as
mathematicians make when they define the square-root

http://www.maths.tcd.ie/pub/HistMath/People/Hamilton/Quatern1/
http://historical.library.cornell.edu/cgi-bin/cul.math/docviewer?did=05230001&seq=201&frames=0&view=50
mailto:math@hypercomplex.com
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of a real number to always indicate the positive root—a
useful tactic for some classes of problems, but too re-
strictive, and too limiting, for others. And this definition
does not eliminate the actual ambiguity inherent in the
solution to the general problem.

Indeed, given any particular triplet of real numbers
(a, b, c), and told that (a.i + b.j + c.k) is a square root
of −1, we can immediately infer eight related roots with
alternate +− signs, not just two, that are solutions;

√
−1 = +a.i + b.j + c.k√
−1 = +a.i + b.j − c.k√
−1 = +a.i− b.j + c.k√
−1 = +a.i− b.j − c.k (1.3)√
−1 = −a.i + b.j + c.k√
−1 = −a.i + b.j − c.k√
−1 = −a.i− b.j + c.k√
−1 = −a.i− b.j − c.k

We wouldn’t just pick one, and discard all the others,
because we recognize that the alternatives can some-
times form just as valid solutions as the initial triple
(a, b, c) given. These solutions are the vertices of a cube
inscribed within a sphere with unit radius. That cube
itself, however, can be rotated about the origin giving
rise to an infinite number of yet other solutions to the
same problem—find the square root of −1. The multi-
plicity of roots is compactly recognized by simply saying,
let (a, b, c) be variables, ranging over the unit sphere,
so that (a2 + b2 + c2) = 1, and all the possible roots
indicated here then seem to be represented. This creates
the feeling that equation (1.1) does indeed represent
all possible solutions, and is thus complete. But still,
we haven’t really given recognition to all the possible
roots, because this sphere is linked to a particular basis,
a right-hand system, ij = +k, and there is yet another
infinite set of solutions out there, linked to a left-hand
system, ij = −k, that goes unrecognized by our biased
one-hand convention.

By establishing the convention at the outset—that
only the right-hand need be represented in the basis—
when defining the quaternion system, we throw out a
complete set of perfectly valid solutions to the same
problem. Thus, we are then unable to say, that we have
found the most complete set of solutions possible.

To remedy this situation, we shall deviate from
Hamilton’s decision, and instead give equal weight to
both left-hand and right-hand basis elements.

We introduce subscripts R and L on the unit elements,
to distinguish between those on the right-hand and those
on the left-hand. So, { iR, jR, kR }, will represent a
right-hand basis, and { iL, jL, kL }, will be our left-hand
basis. Without the subscripts, { i, j, k }, the context

will determine whether we’re talking about the right,
the left, or an ambiguous state where the hand is yet
unspecified.

For the right-hand basis system (ij = +k):

i2R = j2
R = k2

R = −1, iR = +jRkR = −kRjR, (1.4)

jR = +kRiR = −iRkR, kR = +iRjR = −jRiR

While for the left-hand basis system (ij = −k):

i2L = j2
L = k2

L = −1, iL = −jLkL = +kLjL, (1.5)

jL = −kLiL = +iLkL, kL = −iLjL = +jLiL

Now, both systems are equally important to us. This
naturally leads to the question of whether we could not
simply construct an algebra which includes all seven
elements { 1, iR, jR, kR, iL, jL, kL} simultaneously, and
thus obtain a bilateral quaternion algebra, inherently
ambidextrous with regard to its geometric interpretation,
being without the usual pre-established one-hand bias,
and thus probably obtain a more useful and naturally
correct system to work with.

Of course, this two-hand algebra, while it obviously
includes at least two sub-algebras that are separately
well defined—a left-hand quaternion system, and a
right-hand quaternion system, sharing the same real
scalar dimension—yet has those undefined cross-terms,
between left and right basis elements, like iRjL = ? ,
still to be resolved, and so is not completely specified by
the equations in (1.4) and (1.5) above. We need a way
to establish the definitions of these cross-terms. One
method of doing so suggests itself when attempting to
solve linear quaternion equations with matrix algebra.
And we shall take our hints from there to construct a
more complete two-hand quaternion system, which, for
reasons that will become obvious later, we shall call
Hexpentaquaternion Algebra.

2. SOLVING SIMPLE LINEAR QUATERNION

EQUATIONS.

Our objective now is to solve equations of the type,

A1qB1 + A2qB2 + ... + AnqBn = C (2.1)

where Ak, Bk, C, are known quaternion parameters
(with k = 1, 2, ..., n), while q is the unknown quaternion
variable whose value we have to determine.

Were we dealing with either real or complex algebra,
this equation would be trivial to transform into the more
elementary form,

Aq = C (2.2)
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with the new parameter A being given by,

A = A1B1 + A2B2 + ... + AnBn. (2.3)

This is because the known parameters all commute with
the unknown variable. Similarly, we could arrange the
equation into the alternate simple form,

qB = C (2.4)

where the new parameter B is again given by the
same formula (2.3) that defines A, because for real and
complex algebras it is always the case that A = B.

Once we have the equation in the simplified form, ei-
ther (2.2) or (2.4), solution is elementary, being either,

A−1Aq = A−1C (2.5)

1q = A−1C (2.6)

q = A−1C (2.7)

or,

qBB−1 = CB−1 (2.8)

q1 = CB−1 (2.9)

q = CB−1 (2.10)

according to our re-arrangement. But, either way, the
answer is the same, since we know, B−1 = A−1, and the
commuting property gives, A−1C = CA−1 = CB−1.

But, when dealing with quaternions, this simple
method of arranging to simplify, and solving by multi-
plying by suitable inverse parameters, is complicated by
the fact that the parameters don’t commute.

If we could find a new parameter B′
k, so that

B′
kq = qBk, then we could use a similar re-arranging

and simplifying procedure to that above to solve the
quaternion equation, for then A1qB1 + ... could be
written A1B

′
1q + ..., and all the known parameters again

aggregate on one side of the unknown variable q, leading
once more to the form Aq = C, which we can solve, or
at least determine whether there are any solutions.

Consider, for example, the following simplified version
of equation (2.1) for quaternions, with now just two fac-
tors, A and B,

Aq + qB = C (2.11)

If we can indeed find that left-hand parameter B′, one
would be able to write,

Aq + B′q = C (2.12)

(A + B′)q = C (2.13)

q = (A + B′)−1C (2.14)

and the problem is solved for quaternions.

Alternatively, if we could find a new parameter A′,
so that qA′ = Aq, we could also solve this quaternion
equation, this time from the other side of the unknown
variable,

qA′ + qB = C (2.15)

q(A′ + B) = C (2.16)

q = C(A′ + B)−1 (2.17)

again producing a solution.

What we need then, is to find an effective way to
construct left-parameters that are equivalent in action
to their corresponding right-parameters, and visa versa.
This is not generally possible within a pure quaternion
algebra. However, by changing the representation of the
problem from quaternions to matrices, it then becomes
possible to harness the additional algebraic features
provided by matrix algebra to solve this problem. One
must step out of pure quaternion algebra for some
intermediate steps, that can only be done in matrix
algebra, then return to quaternion algebra at the end to
present the final solution within the quaternion structure
again. This is somewhat reminiscent of a similar issue
classical mathematicians faced with cubic equations
and imaginary numbers. Some perfectly acceptable
real valued roots could only be obtained by a process
of reckoning that deviated into the domain of complex
arithmetic in the intermediate steps, before ending up
back in real arithmetic with acceptable solutions. There
was no process to get these real valued cubic roots using
only real arithmetic. Yet, they were perfectly good real
valued solutions to certain cubic equations. We shall
see some similarities to this peculiar situation here again.

We can define the elemental quaternions q, A, B, C;

q = q0 + q1i + q2j + q3k (2.18)

A = a0 + a1i + a2j + a3k (2.19)

B = b0 + b1i + b2j + b3k (2.20)

C = c0 + c1i + c2j + c3k (2.21)

either in terms of 4× 1 column vectors of the form,






1
i
j
k







so that,

q =







q0

q1

q2

q3






, A =







a0

a1

a2

a3






, B =







b0

b1

b2

b3






, C =







c0

c1

c2

c3






,

or in terms of their corresponding 1 × 4 row vectors.
We shall choose the column vector approach to proceed
with our matrix reckoning; and let us consider the ijk
to form a right-hand system here.
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First, consider the product Aq,

(2.22)

Aq = (a0 + a1i + a2j + a3k) (q0 + q1i + q2j + q3k)

= a0q0 + a0q1i + a0q2j + a0q3k
+ a1iq0 + a1iq1i + a1iq2j + a1iq3k
+ a2jq0 + a2jq1i + a2jq2j + a2jq3k
+ a3kq0 + a3kq1i + a3kq2j + a3kq3k

resolve the binary products ij = k etc..,

= a0q0 + a0q1i + a0q2j + a0q3k
+ a1q0i − a1q1 + a1q2k − a1q3j
+ a2q0j − a2q1k − a2q2 + a2q3i
+ a3q0k + a3q1j − a3q2i − a3q3

re-arrange and write in 4× 1 column vector form,







a0q0 − a1q1 − a2q2 − a3q3

a1q0 + a0q1 − a3q2 + a2q3

a2q0 + a3q1 + a0q2 − a1q3

a3q0 − a2q1 + a1q2 + a0q3







factor into the equivalent matrix product form,







a0 −a1 −a2 −a3

a1 +a0 −a3 +a2

a2 +a3 +a0 −a1

a3 −a2 +a1 +a0













q0

q1

q2

q3







this can then be re-written,

Aq = (a01 + a1I + a2J + a3K)q (2.23)

where,

1 =





+1 0 0 0
0 +1 0 0
0 0 +1 0
0 0 0 +1



, I =





0 −1 0 0
+1 0 0 0
0 0 0 −1
0 0 +1 0





J =





0 0 −1 0
0 0 0 +1

+1 0 0 0
0 −1 0 0



, K =





0 0 0 −1
0 0 −1 0
0 +1 0 0

+1 0 0 0





Note that these matrices have IJ = +K , and obey all
the product rules of a right-hand quaternion system,

I2 = J2 = K2 = −1, I = JK = −KJ ,

J = KI = −IK, K = IJ = −JI

so what we have is a complete representation for the
right-hand basis elements of Hamilton’s quaternions,

1 ∼ 1, iR ∼ I, jR ∼ J , kR ∼K

using elementary 4× 4 square matrices.

Now, consider the product qB,

(2.24)

qB = (q0 + q1i + q2j + q3k) (b0 + b1i + b2j + b3k)

= q0b0 + q0b1i + q0b2j + q0b3k
+ q1ib0 + q1ib1i + q1ib2j + q1ib3k
+ q2jb0 + q2jb1i + q2jb2j + q2jb3k
+ q3kb0 + q3kb1i + q3kb2j + q3kb3k

resolve the binary products ij = k etc..,

= q0b0 + q0b1i + q0b2j + q0b3k
+ q1b0i − q1b1 + q1b2k − q1b3j
+ q2b0j − q2b1k − q2b2 + q2b3i
+ q3b0k + q3b1j − q3b2i − q3b3

re-arrange and write in 4× 1 column vector form,







q0b0 − q1b1 − q2b2 − q3b3

q0b1 + q1b0 + q2b3 − q3b2

q0b2 − q1b3 + q2b0 + q3b1

q0b3 + q1b2 − q2b1 + q3b0







factor into the equivalent matrix product form,







b0 −b1 −b2 −b3

b1 +b0 +b3 −b2

b2 −b3 +b0 +b1

b3 +b2 −b1 +b0













q0

q1

q2

q3







this can then be re-written,

qB = (b01 + b1I
′ + b2J

′ + b3K
′)q (2.25)

where,

1 =





+1 0 0 0
0 +1 0 0
0 0 +1 0
0 0 0 +1



, I′ =





0 −1 0 0
+1 0 0 0
0 0 0 +1
0 0 −1 0





J ′ =





0 0 −1 0
0 0 0 −1

+1 0 0 0
0 +1 0 0



, K ′ =





0 0 0 −1
0 0 +1 0
0 −1 0 0

+1 0 0 0





Note that these matrices have I′J ′ = −K ′ , and obey
all the product rules of a left-hand quaternion system,

I′2 = J ′2 = K ′2 = −1, I′ = −J ′K ′ = K ′J ′,

J ′ = −K ′I′ = I′K ′, K ′ = −I′J ′ = J ′I′

so what we have is a complete representation for the
left-hand basis elements of Hamilton’s quaternions,

1 ∼ 1, iL ∼ I′, jL ∼ J ′, kL ∼K ′

using elementary 4× 4 square matrices.
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Now let us revisit that equation introduced before,

Aq + qB = C (2.11)

We see that by using matrices we can indeed collect the
known parameters on one side of the q variable. Using
the results above, we can now write this equation as,0BB�a0 −a1 −a2 −a3

a1 +a0 −a3 +a2
a2 +a3 +a0 −a1
a3 −a2 +a1 +a0

1CCA0BB�q0
q1
q2
q3

1CCA +

0BB� b0 −b1 −b2 −b3
b1 +b0 +b3 −b2
b2 −b3 +b0 +b1
b3 +b2 −b1 +b0

1CCA0BB�q0
q1
q2
q3

1CCA =

0BB�c0
c1
c2
c3

1CCA .

So, effectively, we have found, in a way, the left-
parameter B′, such that we may write,

Aq + B′q = C (2.12)

and can solve the problem. But this is only accomplished
by juggling representations of quaternions from elemen-
tary to matrix form and back. Moreover, we started out
with one representation of quaternions in elementary
basis format, and transformed the stated problem by
introducing really two different matrix representations:
(1) in column vector, and (2) in square matrix.

Considering the four parameters, A, B, C, q, we see
that the two factors, A, B, are both changed into
4 × 4 square matrices, while the variable, q, and the
inhomogeneous parameter, C, are re-written differently,
as 4 × 1 column vectors. So, two different types of
matrix representations are utilized simultaneously in the
same problem. This contrasts with our original framing
of the problem, where all four of these parameters are
represented in the same {1, i, j, k} basis element format.

Nevertheless, whether it is column vector or square,
these are both matrix formats. Moreover, they are
intricately related formats that are built around the
particular dimension number 4, and so form just a subset
of the more general M×N matrix algebra available to us.

Using matrix rules, we can now combine the factors to
obtain,

(2.26)0BB�a0 + b0 −a1 − b1 −a2 − b2 −a3 − b3
a1 + b1 +a0 + b0 −a3 + b3 +a2 − b2
a2 + b2 +a3 − b3 +a0 + b0 −a1 + b1
a3 + b3 −a2 + b2 +a1 − b1 +a0 + b0

1CCA0BB�q0
q1
q2
q3

1CCA =

0BB�c0
c1
c2
c3

1CCA .

The solution exists, provided that the combined matrix
factor doesn’t have a vanishing determinant. This is,
however, the same simplified equation form, Aq = C,
which we sought. Except now, that new factor A isn’t
a quaternion at all. The variable, q, and parameter,
C, are still quaternions, just in 4 × 1 matrix format.
But, the combined factor is a new kind of object to us.
It’s a matrix alright, but not a quaternion in matrix

format. Were it a quaternion, we would be guaranteed
of a solution, since every non-zero quaternion has a
multiplicative inverse, so A−1 is guaranteed to exist,
letting us complete the steps, A−1Aq = A−1C, and

write q = A−1C. Only when A = 0, are we unable
to solve, and this only happens in the singular spe-
cial case where all the components of A vanish, so
a0 = a1 = a2 = a3 = 0.

But, we can’t say the same thing here with our new
type of A factor object. It’s closer to a general square
matrix with its eight components—half that of a full
4× 4 = 16 matrix—instead of the usual 4 existing when
writing quaternions as square matrices, and so can fail
to have an inverse at times even when all its component
values are non-zero. With this said, we are still able
to find the solutions when they exist, and can always
determine whether or not there is a solution at all. So,
the problem is effectively solved with matrix algebra.

What is the additional apparatus that matrix algebra
provides us with that enables us to solve these quaternion
problems? Look again at the equations (2.23) and (2.25),

Aq = (a01 + a1I + a2J + a3K)q = Aq (2.27)

qB = (b01 + b1I
′ + b2J

′ + b3K
′)q = B′q (2.28)

Equations (2.11), (2.12), (2.26), can actually be re-
written,

((a0 + b0)1 + a1I + a2J + a3K + b1I
′ + b2J

′ + b3K
′)q

= C (2.29)

We see that the matrix method is effectively com-
bining representations of both left-hand and right-hand
basis elements simultaneously in the reckoning. Matrix
algebra then, allows us to incorporate the left-hand
elements along with right-hand elements in the same

equation. The moving of the B parameter, in the term
qB, to the other side of the variable q, so that we can
write an equivalent result, B′q, in place, is accomplished
by replacing the right-hand elements with corresponding
left-hand elements, keeping the component values un-
changed, the B = b01+ b1I + b2J + b3K, being replaced
by B′ = b01 + b1I

′ + b2J
′ + b3K

′, and in this way the
factor can be moved[3].

Within a right-hand basis alone, we are unable to move
the known parameters to the other side of the unknown
variable q. So, we can’t simplify the equation to solve
it the usual way. Matrices add that facility, allowing
us to effectively construct left-parameter equivalents for
corresponding right-parameters, and to aggregate all the
knowns on one side of the variable to be found.

Thus, by changing the representation to matrices we
are able to solve this problem, because the matrix algebra
contains sufficient flexibility to allow for the expression
of the left-hand elements together with the right-hand
elements of the quaternion system. Hamilton’s calculus
is unable to cope, because it is limited to a right-hand
system alone, lacking this required flexibility.
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This suggests we might benefit from study-
ing the algebra of those seven matrix elements,
{1, I, J , K, I′, J ′, K ′}. These are effectively the same
seven basis elements {1, iR, jR, kR, iL, jL, kL}, mentioned
in our opening section. However, because of our par-
ticular representation, we can now use matrix algebra
to find the results of the products that cross left-hand
with right-hand, and so complete the picture for this
extended quaternion system. We take the product of
every element in our basis with every other element,
and when a new matrix element is found, we add this
to our set, and repeat the procedure, to get all possible
matrices that can be obtained by taking products of
existing elements. If a matrix, Z, is in the set, we don’t
add the negative of this matrix when it shows up in a
product, instead we’ll represent this by an overall mi-
nus sign, −Z, and consider the product already included.

There are then found to be a grand total of 16 matrix
elements (table t.1 ), which should come as no surprise,
since the general 4×4 matrix has just this number of com-
ponents, and hence degrees of freedom, and no more, yet
is sufficiently able to solve all the problems posed by our
equations. Of these sixteen elements, seven, of course,
we’ve met before, and we’ll refer to now by the labels[4],
E, IR, JR, KR, IL, JL, KL. The remaining nine, after
some careful thought, we find somewhat appropriate
to label, IM , JM , KM , IA, JA, KA, IZ , JZ , KZ ; the
latter nine forming 3 natural groups of triplets, one
triplet being obtained by crossing right and left basis
elements of the same axis-label—thus given the label M

for middle-hand elements—while the other two triplets
are differentiated by the somewhat more arbitrarily
chosen letters A and Z, just because we find it convenient
to place these triplets first and last in the 16×16 product
table (table t.2 ), for visual symmetry. Let’s explore
these results.

IM , JM , KM . In the first new triplet, the matrices are
formed from the product between right and left quater-
nion elements of similar axes, IM = IRIL = ILIR ... etc.,
so we have,

IM =





−1 0 0 0
0 −1 0 0
0 0 +1 0
0 0 0 +1



, JM =





−1 0 0 0
0 1 0 0
0 0 −1 0
0 0 0 1





KM =





−1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 −1



.

Note that IMJM = JMIM = −KM , and these matrices
follow the product rules of the commutative system,

IM
2 = JM

2 = KM
2 = 1, IM = −JMKM = −KMJM ,

JM = −KMIM = −IMKM , KM = −IMJM = −JMIM

Rather than being the roots of −1, these elements are
the roots of +1, by contrast; and unlike the imaginary

units in quaternions, these elements actually commute
with each other. These are all diagonal matrices.

IA, JA, KA. In the second new triplet, the matrices are
formed from the product between right and left quater-
nion elements of different axes, fixing the actual positions
of r before l, while cyclically permuting the axis labels,
so we get, IA = JRKL, JA = KRIL, KA = IRJL, and we
have,

IA =





0 1 0 0
1 0 0 0
0 0 0 −1
0 0 −1 0



, JA =





0 0 1 0
0 0 0 −1
1 0 0 0
0 −1 0 0





KA =





0 0 0 1
0 0 −1 0
0 −1 0 0
1 0 0 0



.

Note that IAJA = JAIA = −KA , and these matrices
follow the product rules of the commutative system,

IA
2 = JA

2 = KA
2 = 1, IA = −JAKA = −KAJA,

JA = −KAIA = −IAKA, KA = −IAJA = −JAIA

Rather than being the roots of −1, these elements are
again the roots of +1; and again, unlike the imaginary
units in quaternions, these elements actually commute
with each other. The position of the non-zero component
in either the first row or first column of the square matrix
also determines the I, J, K, label assignment.

IZ , JZ , KZ . In the third new triplet, the matrices are
once more formed from the product between right and
left quaternion elements of different axes, fixing the ac-
tual positions of r before l, while this time permuting
the axis labels acyclically, so that, IZ = KRJL, JZ =
IRKL, KZ = JRIL, so we have,

IZ =





0 −1 0 0
−1 0 0 0
0 0 0 −1
0 0 −1 0



, JZ =





0 0 −1 0
0 0 0 −1
−1 0 0 0
0 −1 0 0





KZ =





0 0 0 −1
0 0 −1 0
0 −1 0 0
−1 0 0 0



.

Note that IZJZ = JZIZ = −KZ , and these matrices
follow the product rules of the commutative system,

IZ
2 = JZ

2 = KZ
2 = 1, IZ = −JZKZ = −KZJZ ,

JZ = −KZIZ = −IZKZ , KZ = −IZJZ = −JZIZ

So, once again, rather than being the roots of −1, these
elements are roots of +1; and unlike the imaginary units
in quaternions these elements actually commute with
each other. The position of the non-zero component in
either the first row or first column of the square matrix
also determines the I, J, K, label assignment; but this
time, all the four non-zero components in each of the
square matrices are −1.
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Some brief remarks on these imaginary units are
probably in order here. First of all, we have obviously
found sets of elements that represent two different
types of roots: (1) the two roots of −1, given by the R

and L anti-commuting elements; (2) the three roots of
+1, given by the M, A, Z, commuting elements. These
anti-commuting and commuting elements work together
to complete the algebra. We can’t just have an algebra
with all the imaginary square roots being of −1 alone,
we must include these three extra imaginary square
roots of +1 to complete the picture.

We may notice that our definitions of the A and Z are
somewhat similar to the definitions for R and L, respec-
tively, in that both R and A are defined by cyclically per-
muting the axes labels IJK, while both L and Z are de-
fined contrarily, by acyclically permuting the same[5].

IR = JRKR, IA = JRKL, cyclical IJK (2.30)

IL = KLJL, IZ = KRJL, acyclical IJK (2.31)

This might tempt us to call A and Z the right-hand and
left-hand roots of +1. This would give us a somewhat
more pleasing symmetry— the square root of −1 being
observed to have right-hand and left-hand anti-
commuting roots, with the square root of +1 taking on
right-hand, middle-hand, and left-hand commut-
ing roots by comparison. These anti-commuting doublet
and commuting triplet may even remind us of fermions
and bosons in particle physics, with the spin-half and
spin-one characteristics of doublet (−1/2, +1/2) and
triplet (−1, 0, +1) seeming to form a somewhat familiar
parallel to this algebraic symmetry.

Whatever case might be made for the parallels
with physics, however, the problem with calling A

and Z the right-hand and left-hand roots, is that
these two triplets form isomorphic four-dimensional
algebras with the middle-hand. The three alge-
bras based on {E, IM , JM , KM}, {E, IA, JA, KA}, and
{E, IZ , JZ , KZ}, are all interchangeable with each other,
being algebraically indistinguishable. They form identi-
cal structures, or rather, they happen to be just different
representations of the same one algebra. This particular
algebra is given by the commuting rules,

E2 = +E,

I2 = J2 = K2 = E, IJ = JI = −K, (2.32)

JK = KJ = −I, KI = IK = −J.

This algebra bears little resemblance to Hamilton’s
quaternion algebra. The algebra also differs from the
previously studied Davenport [1−] (1991[6], 1996[7]) com-
muting hypercomplex algebra, which is defined by,

E2 = +E,

I2 = J2 = −K2 = −E, IJ = JI = +K, (2.33)

JK = KJ = −I, KI = IK = −J.

Davenport mixes one square root of +1 and two square
roots of −1, i.e. (K2 = +1, I2 = −1, J2 = −1), in
the same four-dimensional algebra. This commuting
hypercomplex algebra, by contrast, consists of just the
roots of +1 only, leaving the roots of −1 to be dealt
with separately and entirely by the quaternions.

The main point we wish to make here, however, is that
there really is just one type of commuting hypercomplex
algebra contained in the three—M, A, Z—sub-algebras.
This is in stark contrast to the two quaternion algebras,
given by the equations in (1.4) and (1.5) above, which are
clearly distinct between right-hand and left-hand
forms[8].

One could argue then, that this new extended quater-
nion algebra we’ve constructed really consists of just
three distinct sub-algebras—a pair of right-hand and
left-hand algebras that are the anti-commuting roots
of −1, and a single middle-hand algebra which is a
commuting root of +1. This latter algebra appearing,
however, in three of its representations—M, A, Z—
making the overall number of sub-algebras appear to be
five in number.

But, there is more to this picture. While it is true
that these three commuting algebras are really identical
to each other, from an intra-algebra point of view, and
so are better considered representations of the same
one algebra, these representations, however, interact
differently with the R and L sub-algebras, and so can’t
really be substituted for each other when considering
the products between different sub-algebraic elements.
The inter-algebra interactions bring out the distinctions
among the three—M, A, Z. Thus, in the context of
our extended algebraic structure, we really do have to
consider five sub-algebras—R, L, M, A, Z—to complete
the picture.

Naming the Algebra. Because there are 16 elements
in our new algebra, we prepend hex, taken from the al-
ternative name—hexadecanions—the five sub-algebras
that span the extended structure then suggest penta[9],
and the fact that this new system is derived by extending
Hamilton’s ideas suggests quaternions—so, we call this
system hexpentaquaternion algebra, or for a more
convenient alternative short name—hexpe numbers [10].

http://home.usit.net/~cmdaven/khyprcpx.htm
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The most general hexpe number we can write down is,

h = h0E (2.34)

+ hR1IR + hR2JR + hR3KR

+ hL1IL + hL2JL + hL3KL

+ hM1IM + hM2JM + hM3KM

+ hA1IA + hA2JA + hA3KA

+ hZ1IZ + hZ2JZ + hZ3KZ

Then, using the definitions of the IJK matrices, we can
re-write this number in the alternative square matrix
form.

h = [aij ] =







a00 a01 a02 a03

a10 a11 a12 a13

a20 a21 a22 a23

a30 a31 a32 a33






(2.35)

with,

a00 = +h0 − hM1 − hM2 − hM3

a10 = +hR1 + hL1 + hA1 − hZ1

a20 = +hR2 + hL2 + hA2 − hZ2

a30 = +hR3 + hL3 + hA3 − hZ3

a01 = −hR1 − hL1 + hA1 − hZ1

a11 = +h0 − hM1 + hM2 + hM3

a21 = +hR3 − hL3 − hA3 − hZ3

a31 = −hR2 + hL2 − hA2 − hZ2

(2.36)

a02 = −hR2 − hL2 + hA2 − hZ2

a12 = −hR3 + hL3 − hA3 − hZ3

a22 = +h0 + hM1 − hM2 + hM3

a32 = +hR1 − hL1 − hA1 − hZ1

a03 = −hR3 − hL3 + hA3 − hZ3

a13 = +hR2 − hL2 − hA2 − hZ2

a23 = −hR1 + hL1 − hA1 − hZ1

a33 = +h0 + hM1 + hM2 − hM3

We can invert these linear equations to express the
hexpe-coefficients in terms of the aij components. This
is most easily done by recognizing that the hexpe matrix
bases contain all the information needed to invert these
equations. One simply takes the four aij components
that correspond to the non-zeros in any particular hexpe
basis matrix, multiplies them by the +1 or −1 that
appears in the corresponding locations, adds these four
terms up, and divides the total by 4. This yields the
correct value for the coefficient corresponding to that
particular hexpe basis matrix.

For example, say we wish to find the coefficient of JA,
in equation (2.34), we look at its matrix components,

JA =





0 0 1 0
0 0 0 −1
1 0 0 0
0 −1 0 0





this tells us that we only need the four aij components—
{a20, a31, a02, a13}—and we’d then multiply by the cor-
responding signed units—{+1,−1, +1,−1}—add and di-
vide by 4 to give us,

hA2 = (a20 − a31 + a02 − a13)/4

In this way, we can easily write down the hexpe coef-
ficients for any general 4 × 4 square matrix, by simply
locating the non-zero components of the basis matrices.

Inverting the equations in (2.36) then gives us,

h0 = (+a00 + a11 + a22 + a33)/4

hM1 = (−a00 − a11 + a22 + a33)/4

hM2 = (−a00 + a11 − a22 + a33)/4

hM3 = (−a00 + a11 + a22 − a33)/4

hA1 = (+a10 + a01 − a32 − a23)/4

hA2 = (+a20 − a31 + a02 − a13)/4

hA3 = (+a30 − a21 − a12 + a03)/4

hZ1 = (−a10 − a01 − a32 − a23)/4

hZ2 = (−a20 − a31 − a02 − a13)/4 (2.37)

hZ3 = (−a30 − a21 − a12 − a03)/4

hR1 = (+a10 − a01 + a32 − a23)/4

hR2 = (+a20 − a31 − a02 + a13)/4

hR3 = (+a30 + a21 − a12 − a03)/4

hL1 = (+a10 − a01 − a32 + a23)/4

hL2 = (+a20 + a31 − a02 − a13)/4

hL3 = (+a30 − a21 + a12 − a03)/4

Now that we can write the hexpe number as a general
square matrix, and convert any 4 × 4 matrix back into
hexpe number format, we can proceed to use our knowl-
edge of matrix algebra to work out the corresponding
calculus for the hexpe system.

In particular, we can now find the multiplicative
inverse of any arbitrary hexpe number of the form
given in equation (2.34), by using our knowledge of how
to construct an inverse matrix of the form given in (2.35).
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Linear Independence. The 16 hexpe basis matrices
in (2.34) are easily shown to be linearly independent.
If we could express any basis matrix in terms of the
others then there would exist a set of values for the
hexpe coefficients {h0, hR1, hR2, ..., hZ3}, not all 0, for
which we’d have h = 0. But, h = 0 means that all aij

components in (2.35) must be 0, and from the inverse
equations (2.37), we see immediately, that all the hexpe

coefficients must vanish also. So, there is no set of
non-zero hexpe coefficients for which we can write h = 0,
hence the basis matrices are linearly independent.

Multiplicative Inverse. In general, to construct
the inverse of a matrix like [aij ] given in (2.35), we need
to calculate the overall determinant, det([aij ]), strike
out the i-th row and j-th column in our 4 × 4 matrix
to get the reduced 3 × 3 matrix whose determinant is
called the Minor, Mij , create the cofactor matrix, [Fij ],
by taking these Minors as components with alternating
signs, Fij = (−1)i+jMij , transpose the cofactor matrix
to obtain the adjoint matrix, [Fji] = [Fij ]

T , and divide
by that overall determinant to obtain the inverse,
[aij ]

−1 = [Fji]/det([aij ]). But, before proceeding with
this method, let us examine the multiplicative inverses
for a few special case hexpe numbers, using some
alternate algebraic tricks.

THE R-HAND. First let us consider hexpe numbers that
are just equivalent to the already familiar right-hand
quaternions. All hexpe coefficients vanish, therefore, ex-
cept {h0, hR1, hR2, hR3}. Our number then looks like;

h = h0E + hR1IR + hR2JR + hR3KR (2.38)

We know that the product of the imaginary basis el-
ements anti-commute, IRJR = −JRIR, so that if we
multiply h by itself, there will be cross terms like
IRJR + JRIR which cancel, but also other cross terms
like EIR + IRE, that will leave us with some imaginary
components remaining in our result. To get the latter
type of cross terms to vanish also, we change the sign on
the imaginary components (or alternatively change the
sign on the E), and so construct a new number defined
by,

g = h0E− hR1IR − hR2JR − hR3KR (2.39)

Now, when we take the product, gh, both types of cross
terms will vanish, in our result, leaving us with a number
just proportional to E.

gh = (h2
0 + h2

R1 + h2
R2 + h2

R3)E (2.40)

Our inverse, h−1, then, is obtained by dividing the new
number, g, by the factor[11] that makes the r.h.s the
unit matrix.

h−1 =
h0E− hR1IR − hR2JR − hR3KR

h2
0 + h2

R1
+ h2

R2
+ h2

R3

(2.41)

This simple transformation is so useful, that we
typically give the changing of signs a special name, the
‘conjugate,’ and use an asterix to write, h∗ ≡ g.

THE L-HAND. Next let us consider hexpe numbers equal
to the left-hand quaternions. Now, all hexpe coefficients
vanish except {h0, hL1, hL2, hL3}. Our number is,

h = h0E + hL1IL + hL2JL + hL3KL (2.42)

The situation is very similar to the right-hand quater-
nions. The product anti-commutes, ILJL = −JLIL. So,
we get vanishing cross terms when we multiply h by it-
self. To get even the EIL+ILE terms to vanish, we play
the same trick of changing signs to define,

g = h0E− hL1IL − hL2JL − hL3KL (2.43)

Then the product, gh, is again proportional to the unit
matrix.

gh = (h2
0 + h2

L1 + h2
L2 + h2

L3)E (2.44)

And our inverse, h−1, is determined in the same manner,
by dividing the new number, g, by the factor that makes
the r.h.s equal to the unit matrix.

h−1 =
h0E− hL1IL − hL2JL − hL3KL

h2
0 + h2

L1
+ h2

L2
+ h2

L3

(2.45)

We can define the conjugate here also, representing
that same kind of sign change transformation we met
with in the right hand case, and write, h∗ ≡ g. So,
this concept of the conjugate is applicable to both
right-hand and left-hand imaginary elements, and helps
us to construct the multiplicative inverse of a number in
both cases.

THE M-HAND. Now we’d like to consider the middle-hand
numbers. The inverses for these hexpe numbers are
somewhat more complicated. In the case where all the
hexpe coefficients vanish except {h0, hM1, hM2, hM3},
the number becomes,

h = h0E + hM1IM + hM2JM + hM3KM (2.46)

This time these imaginary elements commute, however,
we have, IMJM = JMIM , so multiplying h by itself
would leave quite a few imaginary terms floating around
the result. To get rid of as many of these as possible
we must change the sign on only two imaginary ele-
ments, leaving the third with its original sign, so that
we’d get the maximum number of cross terms canceling
each other. Therefore we first construct the number,

g = h0E + hM1IM − hM2JM − hM3KM (2.47)

then observe that the product, gh, is,

gh = (h2
0 + h2

M1 − h2
M2 − h2

M3)E (2.48)

+ (2h0hM1 + 2hM2hM3)IM
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This result has the form, (aE+bIM ), and we can use the
standard algebraic formula, (x2−y2) = (x+y)(x−y), to
find our inverse. We first define a new factor, f , to have
the complementary form, (aE − bIM ), so,

f = (h2
0 + h2

M1 − h2
M2 − h2

M3)E (2.49)

− (2h0hM1 + 2hM2hM3)IM

Then because, (aE−bIM )(aE+bIM ) = (a2E2−b2IM
2),

and, IM
2 = E2 = E, the product, fgh, would give us,

fgh = (a2 − b2)E (2.50)

where

a = (h2
0 + h2

M1 − h2
M2 − h2

M3) (2.51)

b = (2h0hM1 + 2hM2hM3) (2.52)

Our inverse, h−1, is then obtained by dividing the prod-
uct, fg, by this normalizing factor, (a2 − b2), so that,

h−1 =
w0E + w1IM + w2JM + w3KM

a2 − b2
(2.53)

where

a2 − b2 = h4
0 + h4

M1 + h4
M2 + h4

M3 (2.54)

− 2h2
0h

2
M1 − 2h2

0h
2
M2 − 2h2

0h
2
M3

− 2h2
M2h

2
M3 − 2h2

M1h
2
M3 − 2h2

M1h
2
M2

− 8h0hM1hM2hM3

and,

w0 = h3
0 − h0(h

2
M1 + h2

M2 + h2
M3)− 2hM1hM2hM3

w1 = h3
M1 − hM1(h

2
0 + h2

M2 + h2
M3)− 2h0hM2hM3

w2 = h3
M2 − hM2(h

2
M1 + h2

0 + h2
M3)− 2hM1h0hM3

w3 = h3
M3 − hM3(h

2
M1 + h2

M2 + h2
0)− 2hM1hM2h0

The inverse, h−1, obviously doesn’t exist when
a2 − b2 = 0, but otherwise it is defined by the for-
mulas in (2.53-54).

Consider, for example, the special case obtained when,
{h0 = 1, hM1 = −1, hM2 = 1, hM3 = 1}, our number is,

h = E − IM + JM + KM (2.55)

We see that, a = 0, b = 0, so that a2 − b2 = 0, and our
denominator vanishes in (2.53), so this number has no
inverse. We might notice that the wk all vanish also,
for these particular coefficients, and might think that
wk/(a2 − b2) = 0/0, being undefined, suggests that it’s
possible for an inverse to exist anyway. After all, if the
numerator vanishes because of a proportional zero factor,
e.g. wk = uk(a2 − b2), then although both numerator
and denominator vanish independently, according to our
formulas there could be situations where the ratio was
nevertheless finite, e.g. wk/(a2 − b2) = uk. But we note
that if we constructed the g number, by changing signs,
we’d get,

g = E − IM − JM −KM (2.56)

and we observe that the product of these two numbers
now vanishes, gh = 0.

Now, if a finite non-zero inverse did exist, say h−1,
then because the numbers all commute here we would
be able to write, h−1h = hh−1 = E, and multiplying by
g we’d obtain ghh−1 = gE = g. The associative law for
matrices, (xy)z = x(yz), then guarantees that we may
compute this in either of two ways, (gh)h−1 = g(hh−1).
But the l.h.s is 0h−1 = 0, while the r.h.s is gE = g, so
we’d get g = 0, which contradicts the definition (2.56).
So, there can be no multiplicative inverse for our h
number. In other words, given any particular number,
h, the existence of a non-zero factor, g, that produces
zero on taking the product, gh = 0, is sufficient evidence
that the number, h, has no multiplicative inverse. From
equation (2.50), we see that whenever, (a2 − b2) = 0, we
are able to construct such a null producing factor.

To see this, note that when fgh = 0, this means that
exactly one of the following conditions must hold:

(1) f = 0;

(2) f 6= 0, fg = 0;

(3) f 6= 0, fg 6= 0;

In case (1), if f = 0, then since f = aE − bIM , we
must have, a = b = 0—because the basis matrices are
linearly independent—so that gh = aE + bIM = 0 also,
and since we know h 6= 0 and g 6= 0, we’ve found the
non-zero factor, g, that has a null product with h. In
case (3), it follows, immediately, that the product, fg,
itself, is that non-zero factor which has a null product
with h. In case (2), things are a bit more involved. From
the definitions of g and f we can write,

g = (2h0E + 2hM1IM )− h (2.57)

fg = (aE − bIM )(2h0E + 2hM1IM )− fh (2.58)

We know f 6= 0 is given, so either a 6= 0 or b 6= 0, or
both these parameters are non-zero, but equation (2.50)
still holds, so we must have a2 = b2, and so both a 6= 0
and b 6= 0, simultaneously. Moreover, either a = +b or
a = −b, so either f = a(E−IM ) or f = a(E+IM ). Now
since a 6= 0, but fg = 0, we must have either (E−IM )g =
0 or (E + IM )g = 0, that is to say, either g = IMg or
g = −IMg. Comparing terms in the expressions,

g = h0E + hM1IM − hM2JM − hM3KM (2.59)

IMg = hM1E + h0IM + hM3JM + hM2KM (2.60)

we see, either {h0 = hM1, hM3 = −hM2}, or alterna-
tively, {h0 = −hM1, hM3 = +hM2}. So, we can re-write
the g parameter,

g = h0E + h0IM + hM3JM − hM3KM (2.61)

or g = h0E − h0IM − hM3JM − hM3KM (2.62)
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Then, since the g parameter is really constructed from
the original h number by flipping a pair of signs, that
original number must have the form,

h = h0E + h0IM − hM3JM + hM3KM (2.63)

or h = h0E − h0IM + hM3JM + hM3KM (2.64)

These are the forms of the hexpe number, h, where our
case (2) conditions apply. Now combining the above re-
sults, either we have, {a = b, hM1 = h0}, or the alter-
native, {a = −b, hM1 = −h0}, in which case equation
(2.58) becomes,

fg = 2ah0(E − IM )(E + IM )− fh (2.65)

or fg = 2ah0(E + IM )(E − IM )− fh (2.66)

In either case, that first term on the r.h.s vanishes, e.g.
(E − IM )(E + IM ) = (E2 − IM

2) = (E − E) = 0, and
we’re left with the result that, fg = −fh. But, we’re
told that fg = 0, so we conclude, fh = 0. Then, since
f 6= 0, we see that it is f , this time, that is the non-zero
factor that makes a null product with h.

Therefore whenever (a2 − b2) = 0, there exists a
non-zero factor, either g, f , or fg, that makes a null
product with h.

So, the vanishing of this denominator term (a2 − b2)
in (2.53-54) is sufficient to indicate the non-existence
of the multiplicative inverse, and we needn’t worry
about special situations arising where the numerator
and denominator both vanish in some proportional way
that might leave finite ratio values in our formulas to
somehow implicate the existence of a valid inverse.

THE A-HAND. When our hexpe numbers are equivalent to
the middle-hand A-numbers, then all coefficients vanish
except {h0, hA1, hA2, hA3}, and the number becomes,

h = h0E + hA1IA + hA2JA + hA3KA (2.67)

Since the A HAND sub-algebra is isomorphic to the M

HAND sub-algebra, the multiplicative inverse for this h
number is given by the same kind of formulas (2.53-54).
By substituting A LABELs for the M LABELs in the above
formulas, we obtain the results for the A HAND.

THE Z-HAND. When our hexpe numbers are equivalent to
the middle-hand Z-numbers, then all coefficients vanish
except {h0, hZ1, hZ2, hZ3}, and the number becomes,

h = h0E + hZ1IZ + hZ2JZ + hZ3KZ (2.68)

Since the Z HAND sub-algebra is isomorphic to the M HAND

sub-algebra, the multiplicative inverse for this h number
is also given by the same kind of formulas (2.53-54).
By substituting Z LABELs for the M LABELs in the above

formulas, we obtain the results for the Z HAND.

The Weight Factors wk. Perhaps one of the most
intriguing things about the middle-hand inverse formula
is the set of weight factors, wk, that appear in the
numerator of the coefficients. These are essentially cubic
volume measures. The 3-dimensional volumetric mea-
sures that make up these factors have easily understood
geometric interpretations.

We have volumes of 3 types of rectangular boxes
involved. There’s the cube—a box with all dimensions
equal. Then there’s the square faced cuboid—a box with
at least two equal dimensions. And finally, there’s the
general cuboid—a box where all three dimensions may
differ.

Consider, for example, equation (2.54)’s w0 formula.
First we have the term, h3

0, which is clearly the volume
of a cube with side length, h0. Then there’s the last
term containing, hM1hM2hM3, which is the volume of
a general cuboid with dimensions along the IJK axes.
In the middle term, we recognize that sum-of-squares
formula, h2

M1 +h2
M2 +h2

M3, from the cubic diagonal of
a box. In fact, it’s the same box whose volume appears
in the last term. Such a box has several diagonals.
Each face has two diagonals that cross each other at the
center of the face. The sum of squares of two sides gives
the measure of the length for each of these diagonals.
But, there’s also the cubic diagonal which crosses the
volumetric center of the box itself. This diagonal’s length
is measured by the sum of three squares. The actual
length, of course, is the square root of the sum of squares
formula, so the expression here really describes an area,
the area of a square drawn on the cubic diagonal. Then,
the whole term, h0(h

2
M1 + h2

M2 + h2
M3), describes the

volume of that box with one square face constructed on
the cubic diagonal, and the third dimension being the
box’s height given by, h0—i.e. our square faced cuboid.

Once the geometrical picture is recognized, these
cuboid weight factors are easy to remember. Each of the
weight factors has the same kind of formula,

cube− square�cuboid− 2× cuboid.

One only needs to appropriately permute the subscripts
on the parameters to get the weight factors for each axis
in turn. But, now, the inverse of a middle-hand hexpe

number is almost as easy to recall to mind as that for a
right or left quaternion. For the denominator, (a2 − b2),
one can interpret the 4-space volumetric terms in (2.54),
in a similar geometric way, or alternatively, observe that

a2 − b2 = h0w0 + hM1w1 + hM2w2 + hM3w3 (2.69)

Notice that, when the hexpe number is specialized to
one of the five sub-algebras—R, L, M, A, Z—there are
therefore essentially only two types of constructions
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for the multiplicative inverse. The quaternions, left
or right, have an inverse constructed by taking the
conjugate and dividing by the square norm. While, the
middle-hand commutative hypercomplex sub-algebras
have a somewhat more complicated inverse construction
given by the cuboid weight factors divided by that sum.

Nulls. In equation (2.53), when the parameter
(a2 − b2) vanishes, the middle-hand hexpe number, h,
has no inverse. Under these conditions, if h 6= 0, there
exists another non-zero number, p, that makes a null
product with h, i.e, ph = 0. Our interest now, is to
locate the subdomain of the 4-dimensional space where
this occurs. We can express this normalizing parameter
in a few alternative ways;

a2 − b2 = (a− b)(a + b) (2.70)

=
[

(h2
0 + h2

M1 − h2
M2 − h2

M3)− (2h0hM1 + 2hM2hM3)
]

×
[

(h2
0 + h2

M1 − h2
M2 − h2

M3) + (2h0hM1 + 2hM2hM3)
]

= [h0 − hM1 − hM2 − hM3]

× [h0 − hM1 + hM2 + hM3]

× [h0 + hM1 − hM2 + hM3]

× [h0 + hM1 + hM2 − hM3]

= a00a11a22a33 (2.71)

Essentially then, our normalizing parameter is just
the product of the main diagonal components in the
equivalent matrix, [aij ], from (2.35). When one or
more of these four components vanish our denominator
vanishes. To understand the situation better, we can
exploit our familiarity with the usual vector algebra
to get a more revealing geometric grasp of the conditions.

In vector algebra, a plane is defined by a vector normal
to the plane. Let the unit normal be, n = αi + βj + γk,
then if the points in the plane are, r = xi + yj + zk, the
equation of the plane is given by, n · r = d, for some real
valued number, d, that characterizes the plane.

(αi + βj + γk) · (xi + yj + zk) = d (2.72)

αx + βy + γz = d (2.73)

We can see that the vanishing of any one of the factors in
our denominator results in the equation of a plane, there
being four such planes with unit normals given by,

n1 = (+i + j + k)/
√

(3)

n2 = (+i− j − k)/
√

(3) (2.74)

n3 = (−i + j − k)/
√

(3)

n4 = (−i− j + k)/
√

(3)

There are different ways to view these planes. One conve-
nient method is to align the IJK units of the m-h number
with the ijk axes of vector algebra, then interpret the
planes as being in the familiar 3-space, all characterized
by the same, d = h0/

√
3, parameter value, but with each

having a different direction for the unit normal vector, n.

As it turns out, these four planes all intersect each
other at the same angle.

n1 · n2 = cos(θ) = −1/3 (2.75)

θ = arccos(−1/3) = π − arccos(1/3) (2.76)

θ = 109.4712◦ = 109◦28′16′′ (2.77)

This angle, θ = 109.47◦, is the dihedral angle of the
regular octahedron. A dihedral angle is the angle
between two intersecting plane faces of a given polyhe-
dron. The cube has dihedral angle of 90◦. The regular

tetrahedron has dihedral angle of 70.53◦. These three
polyhedra are all closely related solids.

The cube has 6 faces, 8 vertices, and 12 edges, while
the octahedron has 8 faces, 6 vertices, and 12 edges.
So, we can pick the midpoints on the faces of the cube,
join them up, and construct the octahedron. Or, pick
the midpoints on the faces on the regular octahedron,
join them up, and we’d get a cube. So, the cube and
octahedron are called dual solids—from one we can
construct the other. A major consequence of this is that
they both have the same symmetry group. The group
of transformations that leave the cube unchanged also
leave the regular octahedron unchanged.

So, our middle-hand numbers have vanishing inverses
on planes that intersect in octahedral fashion. To get
a better picture of this, recall that the octahedron is
made up of two five sided pyramids. There are intricate
relationships between such types of pyramids and both
the cube and octahedron. A cube, for example, can be
broken out into six pyramids. Let the center of the cube
be the apex of a pyramid and each cube face be the
square base on a pyramid, then we can literally invert

the cube, i.e. turn it inside out, and obtain six identical
pyramids. These pyramids don’t have the same face
angles as the two in our octahedron. But they belong to
the same class of five sided polyhedra. They all look like
the Great Pyramid on the Giza plateau in Egypt, but
with varying construction angles.

Now imagine that we pick up the Great Pyramid in
Egypt and construct another such pyramid under it,
upside down, so that we can join their bases together.
Then we’d get an octahedron. It’s not a regular

octahedron, just a general octahedron. But now, instead
of joining their bases, let us remove the lower pyramid
and place it above the original pyramid, with its apex
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still pointing down, and join the two pyramids at their
main apexes instead. This creates two funnels, with
square cross-sections, leading away from the joined apex
point in two opposite directions. Now elongate the
funnels by extending each pyramid height, thus moving
its square base out towards infinity, while still keeping
the same face angles between the planes.

We now have forward and backward funnels, whose
inside and outside regions define subspaces where the
m-h inverse exists, these regions being bounded by
the four planes where inverses aren’t allowed, and null
producing factors take their place. These funnels are
somewhat like the cones in special relativity, except
our funnels have square cross-sections, rather than
the circular cross-sections in relativity, and except our
outside region is also subdivided into compartments
because those four planes continue to extend off to
infinity also in other directions, and don’t just stop at
the corner edges of the funnel where they intersect.

The joint apex point where all four planes meet in a
single point is defined by the equations, hM1 = hM2 =
hM3 = h0. In other words, in our parallel illustrative
vector algebra, we could write,

r = h0(i + j + k) (2.78)

which locates the apex in 3-space for a given value of
the fourth parameter, h0. If we now draw in the four
unit normal vectors, n1, n2, n3, n4, given in (2.74),
leading out from this point, those normals will define the
locations of the four vertices of a regular tetrahedron,
whose center is this funnel apex. So the 109.47◦ dihedral
angle of the octahedron is also a key angle in the regular
tetrahedron, except it’s an internal angle here, the tetra-
hedron’s own dihedral angle being the corresponding
complement angle, 70.53◦ = 180◦ − 109.47◦.

Invariants. The unit right hand quaternions generate
rotations which are rigid body changes that preserve the
distances between points of an object, enabling it to keep
its shape even while it is transformed about in 3-space.
In the construction of the inverse, we must divide by that
parameter, called the ‘square norm’, which, as it turns
out, is the very expression that measures those distances
that remain invariant.

N2
R(w, x, y, z) = (w2 + x2 + y2 + z2) (2.79)

The unit middle hand numbers generate transformations
that preserve different quantities. No longer are these
metric distances of the space preserved, the distances
between points may increase or decrease after trans-
formation. In the construction of the inverse here, we
find we must now divide by a slightly more complicated

‘quartic norm’, which, we may write,

N4
M (w, x, y, x) = (w − x− y − z)

× (w − x + y + z) (2.80)

× (w + x− y + z)

× (w + x + y − z)

Let us say that our m-h number is the usual,

h = h0E + hM1IM + hM2JM + hM3KM (2.81)

When we apply this transformation operator, h, to our
quaternion 4-space point, q = (w, x, y, z), this transforms
the coordinates into the new point, q′ = (w′, x′, y′, z′).
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y′

z′






= h
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z






=







a00w
a11x
a22y
a33z






(2.82)

w′x′y′z′ = a00a11a22a33 · wxyz (2.83)

The effect of this m-h number then, is to scale each
coordinate variable by a different factor. This is usually
referred to as a nonproportional scaling transforma-
tion, and it contrasts with the proportional scaling

that occurs when multiplying by a r-h quaternion.

Notice, however, that when the m-h normalizing factor
is 1, i.e. N4

M = a00a11a22a33 = 1, the 4-space volume
of the object remains unchanged in (2.83). Although
the relative ratios of the coordinate measures may still
change, w′/x′ = (a00/a11) · (w/x), etc.. the 4-volume
is now a preserved quantity—the object changes shape

while keeping its 4-volume fixed.

For r-h quaternions, when the normalizing factor is
one, i.e. N2

R = 1, we have the unit r-h quaternion,
and preserved distances. Similarly, for m-h middle-hand
numbers, when the normalizing factor is one, i.e N4

M = 1,
we say we have the unit m-h middle-hand number, and
preserved 4-volumes.

h′
R =

h0E + hR1IR + hR2JR + hR3KR

2
√

N2
R(h0, hR1, hR2, hR3)

(2.84)

h′
M =

h0E + hM1IM + hM2JM + hM3KM

4
√

N4
M (h0, hM1, hM2, hM3)

(2.85)

We define the unit number by dividing by the root
of the appropriate norm, so that, h′

R · h′∗
R = E, and,

h′
M · h′†

M = E, where, h′∗
R , is the quaternion conju-

gate, and, h′†
M , is the middle-hand equivalent with cuboid

weight factors in place of sign changes[12]. The norms,
N2

R and N4
M , are quite different expressions, because the

transformations generated by the numbers are very dif-
ferent. Here, in the middle-hand numbers, the object
does not rotate, but changes shape instead.



14

Shape Shifting. One curious observation about the
Great Pyramid is that its truncated height is that of a
cube with same volume as the pyramid. In other words,
the Pharaoh stopped construction when he’d reached
the height of a cube, not when he’d reached the height
of a completed pyramid. To the untrained eye, there’s
only a five sided pyramid there, standing unfinished.
But, to the trained mathematician, there is a cube
sitting out there in the desert, with a shape distorted to
look like a pyramid—it even has the six faces of the cube.

Now, the measurements of the Great Pyramid are
not really known with sufficient precision to determine
whether the cube is to be made equal in volume to the
completed pyramid or the truncated pyramid. But, lets
explore what is known about the measures. The missing
capstone is 1/16-th of the pyramid’s height to apex. So,
if, H , is the pyramid’s complete height, then the trun-
cated height is, 15H/16. Then let, 2L, be the length of
one side of the square base. The volume of the complete
pyramid is, V = 1/3 · (2L)2 · H , and the volume of the
truncated pyramid is, V ′ = (1− (1/16)3) · 1/3 · (2L)2 ·H .

cube-1. If we consider a cube with same volume
as the completed pyramid, then, since the truncated
height is the cube’s height, we have,

(

15H

16

)3

=
(2L)2H

3
(2.86)

(

H

L

)2

=

(

(

16

15

)3
4

3

)

(2.87)

= 1.61817283950617 (2.88)

cube-2. If we consider a cube with the same volume as
the truncated pyramid, then, since the truncated height
is the cube’s height, we have,

(

15H

16

)3

=

(

1−
(

1

16

)3
)

(2L)2H

3
(2.89)

(

H

L

)2

=

((

1−
(

1

16

)3
)

(

16

15

)3
4

3

)

(2.90)

= 1.61777777777778 (2.91)

phi. Now there are alternative theories of the pyramid’s
construction design. The Golden Mean theory says that
the area of a face is the same as the square on height,

H2 =
1

2
· (2L)(H2 + L2)1/2 (2.92)

(2.93)

(

H

L

)2

=

(

1 +
√

5

2

)

= φ (2.94)

= 1.6180339887499 (2.95)

pi. And then there’s the circle theory, which claims the
perimeter of the square base is equal to the circumference
of the circle whose radius is the pyramid’s height,

2πH = 4(2L) (2.96)

(

H

L

)2

=

(

4

π

)2

(2.97)

= 1.6211389382774 (2.98)

THEORY (H/L)2 H/L BASE ANGLE

pi-π 1.621139 1.273240 51.853974 51◦51′14′′

cube-1 1.618173 1.272074 51.828487 51◦49′43′′

phi-φ 1.618034 1.272020 51.827292 51◦49′38′′

cube-2 1.617778 1.271919 51.825088 51◦49′30′′

These theories are fairly close. But only the cube
theory gives a rational for the missing capstone. The
other pi and phi theories have other merits, so perhaps
the Pharaoh played with the numbers to build something
inbetween all these various possibilities to indicate a
connection between them. The difference between the
two extreme values for base angle is less than 1 3

4

′
of

arc. That’s too small for us to decide which theory is
preferred. It isn’t even clear whether we could decide the
issue if the Great Pyramid was in better condition than
it is today. There may have been deliberate errors built
into the original pyramid design to make it impossible
to determine its measures more accurately, just so that
the pyramid could, in fact, implicate more than one
theory simultaneously. The archeologist Piazzi Smyth
observed that the King’s chamber of the Great Pyramid
seemed to have been constructed with deliberate built-in
variances in the linear dimensions of the room, for
some reason or the other, since it was obvious that
the engineers were capable of constructing to much
greater tolerances than is evident in the measurements.
The base angle of the pyramid, which is the angle the
triangular face makes with the square base, is usually
quoted by pyramid theorists to indicate how close a
particular theory comes to the facts of the case. It is
usually near 51◦50′40′′ ± 1′5′′, which is the archeologist
W. M. Petrie’s [13] measurement[1−] on the North Face
of the Great Pyramid.

Khufu’s Transform. Our interest here, however,
is in the cube theory. How would we mathematically
describe such a shape shift? Since Khufu is the name of
the Pharaoh usually credited with building the Great
Pyramid, we’ll refer to the operator that can change
a cube into a truncated pyramid as Khufu’s Transform.

Let’s start with the cube, and set the origin of
coordinates at its center. Let xy be the horizontal plane,

http://www.ronaldbirdsall.com/gizeh/petrie/c6.html#24
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and z the vertical. And let x be the north-south line,
with south positive, y be the east-west line with east
positive, and z positive in the up direction.

Our main interest is in the cube-2 theory. The cube
is transformed into a truncated pyramid, with its volume
unchanged, and its height unchanged. This means only
the planes parallel to the xy horizontal plane experience
scale changes. The square at the top of the cube shrinks
in size, while the square at the base expands. The
shrinking top and expanding bottom are so coordinated
that they produce the exactly compensating scale shifts
required to keep the volume invariant.

Now on each horizontal plane the scale changes in the
x-axis and y-axis are the same, but the size of the scale
factor changes with the vertical z axis. So, if (x, y, z) is
a point on the surface of the initial cube, which becomes
(x′, y′, z′) after Khufu’s Transform, we have,

x′ = α(z)x (2.99)

y′ = α(z)y (2.100)

z′ = z (2.101)

The faces of the Great Pyramid are actually slightly con-
cave [1−] [2−] [3−]. But this is an effect that is so small that
it is invisible to the eye when looking from the ground.
Only an aerial view at certain times of the day reveals
the effect. So, we shall ignore this feature, and consider
the faces flat, in which case our scale factor is only func-
tionally dependent on the one z-coordinate, and can be
considered a linear function, α(z) = az + b. The trans-
form equations become,

x′ = (az + b)x (2.102)

y′ = (az + b)y (2.103)

z′ = z (2.104)

Since we have only two parameters, {a, b}, we only need
to consider how two points on the cube transform, to get
the values of these parameters. Let’s consider the mid-
point, (x1, 0, z1), on the edge of the top square, and the
mid-point, (x2, 0, z2), on the edge of the bottom square,
where,

(x1, 0, z1) = (+
15H

32
, 0, +

15H

32
) (2.105)

(x2, 0, z2) = (+
15H

32
, 0,−15H

32
) (2.106)

remembering that the height of the initial cube is the
same as the height of the final truncated pyramid, which
is 15H/16, and our coordinate mid-points are therefore
all 1/2 of this measure. Then, since, 2L, is the expanded
length of the side on the bottom square of the pyra-
mid, and the top square shrinks to a size 1/16-th of that

length, these coordinates transform to,

(x′
1, 0, z′1) = (+

L

16
, 0, +

15H

32
) (2.107)

(x′
2, 0, z′2) = (+L, 0,−15H

32
) (2.108)

Putting these “before and after” coordinate values
into our transform equations, and solving for the pa-
rameters, we obtain, {a, b} = {−32L/(15H2), 17L/(15H)},
then, substituting these values, the equations become,

khufu’s transform.

x′ =
L

H
·
(

17

15
− 2 · 16

15
· z

H

)

x (2.109)

y′ =
L

H
·
(

17

15
− 2 · 16

15
· z

H

)

y (2.110)

z′ = z (2.111)

Note that, in shape shifting the cube into the truncated
pyramid, all horizontal planes undergo scale changes, ex-
cept one plane which remains invariant. Setting, x′ = x,
to evaluate the position of this plane, we get,

z =
1

2
· 15H

16
·
(

17

15
− H

L

)

(2.112)

Since we established our origin of coordinates at the cen-
ter of the cube, which is 15H/32 higher than the bottom
square, this position represents a height, H0, from the
base of the pyramid, given by,

H0 =
1

2
· 15H

16
·
(

17

15
− H

L

)

+
1

2
· 15H

16
(2.113)

= H ·
(

1− 1

2
· 15

16
· H

L

)

(2.114)

Given the value of our pyramid slope, this invariant plane
turns out to be located below the center of the cube,
and hence below the mid-point of the pyramid’s trun-
cated height, at a vertical distance of slightly more than
the height of the missing capstone, z = (H/16) · (8.5 −
7.5 ·

√
φ) ≈ (H/16) · (−1.040), and its height from base

platform is, H0 ≈ 0.4H . On the Great Pyramid, this
occurs at the 73-rd square platform from the ground,
and is marked by a transition in the step size between
the 73-rd and 74-th levels[2−], giving the impression of a
new pyramid base being formed at that plane[14]. An-
other jump in step size at 1/2 the truncated height,
≈ 1

2
· 450ft = 2700in, is marked by a strikingly sug-

gestive stone step transition, where the under-step is 1/2
the upper-step, indicating that this is the point in the
pyramid’s height where the height from ground below to
this point is 1/2 the total, i.e., suggesting that the Great

Pyramid is deliberately truncated by design!

http://www.catchpenny.org/concave.html
http://www.world-mysteries.com/mpl_2.htm
http://www.hunkler.com/pyramids/pyramid_symbolism.html
http://www.ronaldbirdsall.com/gizeh/petrie/photo/plate8.html
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Cube

Truncated Pyramid

Khufu's Transform

>

FIG. 1: The Great Pyramid

.

Cuboid Scale Changes. Now, our m-h numbers
generate shape shifts. These shape changes are, how-
ever, rather restricted. If we align a cube with its edges
parallel to the coordinate axes, then the cube becomes
a cuboid under this transformation. It never shape
shifts to another type of polyhedron. Scale changes
are strictly along axes lines, and so for the linear
transformation there’s one fixed scale change for each
coordinate axis. The cube can never undergo the type of
shape shift found in the Great Pyramid, which requires
a varying scale change along a coordinate axis, and
this means Khufu’s Transform can’t be implemented
by simply multiplying by an m-h number, unless we
allow the coefficients themselves to be functions of the
same coordinates that are being transformed— a condi-
tion that would then make the transformation non-linear.

Cube

Cuboid

<

FIG. 2: m-h Transform

If the edges of the cube are not aligned with the
coordinate axes, say the diagonal of a face falls on one
of the axes instead, then the cube transforms into a
parallelepiped. Regardless of the orientation of the
shape, however, parallel lines remain parallel. The space
is squeezed and stretched, but not pinched. Distortions
remain strictly along axes lines, and for this reason

we refer to these types of shape shifts as cuboid scale
changes. Under such scale changes properly aligned
cuboids remain cuboids for all possible transformation
operators constructed from m-h numbers, when the
coefficients of these numbers are independent of the
coordinate variables undergoing transformation.

However, there’s one additional complication to this
scaling. From equation (2.82) we see that the m-h
type of scaling permits scale factors with positive or
negative sign. There is no restriction on the signs
for the parameters, a0, a1, a2, a3. This means that
the scaling may incorporate inversions of coordinate
values, or reflections in planes through the origin of
coordinates, along with the pure scaling operation. This
type of transformation is therefore better described as a
“generalized nonproportional scaling,” because it
may include “inversions.”

inversions. In the xy-plane, an inversion of the
x-coordinate value, i.e.

IX : x 7→ x′ = −x, (2.115)

is the same as a reflection in the y-axis, and is again the
same as a 180◦ rotation about the y-axis, if the plane is
allowed to rotate using the higher dimensional 3-space in
which it is considered embedded. But, in 3-dimensional
xyz-space, an inversion of the x-coordinate value cannot
be made equal to any rotation. A 180◦ rotation about the
y-axis would not only take the x-coordinate to its inverse
position, x 7→ −x, but would simultaneously take the z-
coordinate value to its inverse position also, z 7→ −z. An
inversion of one coordinate value, through the origin, is
still equal to a reflection. However, this time the mirror
is the perpendicular plane passing through the origin. If
the inversion changes the signs of two coordinate values
simultaneously, i.e.

IXY : (x, y) 7→ (−x,−y), (2.116)

then it can be made equal to a rotation, but not to any
single reflection through a plane. And if the inversion
involves all three coordinates of the 3-space, i.e.,

IXY Z : (x, y, z) 7→ (−x,−y,−z), (2.117)

then there is neither rotation nor reflection that can be
made to equal this transformation. Finally, the middle-
hand m-h hexpe number may invert four coordinates all
at the same time,

IWXY Z : (w, x, y, z) 7→ (−w,−x,−y,−z), (2.118)

and again, neither a rotation nor a reflection can be con-
structed to produce the same result. Thus, apart from
the one case given in (2.116), the m-h number never gen-
erates a rotation. The rotations are all performed by the
r-h and l-h quaternions, while the m-h number gener-
ates a generalized scaling. What about the a-z numbers?
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The a-hand inverse normalizing factor, N4
A, is similar

to the m-hand factor, N4
M , in (2.80), except the corre-

spondence with the [aij ] matrix components in (2.35) is
very different from that presented in (2.71),

a2 − b2 = (a− b)(a + b) (2.119)

=
[

(h2
0 + h2

A1 − h2
A2 − h2

A3)− (2h0hA1 + 2hA2hA3)
]

×
[

(h2
0 + h2

A1 − h2
A2 − h2

A3) + (2h0hA1 + 2hA2hA3)
]

= [h0 − hA1 − hA2 − hA3]

× [h0 − hA1 + hA2 + hA3]

× [h0 + hA1 − hA2 + hA3]

× [h0 + hA1 + hA2 − hA3]

= α0α1α2α3 (2.120)

4α0 =

+a00 − a01 − a02 − a03

−a10 + a11 + a12 + a13

−a20 + a21 + a22 + a23

−a30 + a31 + a32 + a33

4α1 =

+a00 − a01 + a02 + a03

−a10 + a11 − a12 − a13

+a20 − a21 + a22 + a23

+a30 − a31 + a32 + a33

4α2 =

+a00 − a01 + a02 + a03

−a10 + a11 − a12 − a13

+a20 − a21 + a22 + a23

+a30 − a31 + a32 + a33

4α3 =

+a00 + a01 + a02 − a03

+a10 + a11 + a12 − a13

+a20 + a21 + a22 − a23

−a30 − a31 − a32 + a33

Here the normalizing factor is the product of four
parameters, α0α1α2α3, which are no longer simply the
product of diagonal elements, instead each parameter
is 1

4
of the sum of all the components of the matrix

[aij ] with 6 sign changes in various places in each sum.

Let us say that our a-h number is the usual,

h = h0E + hA1IA + hA2JA + hA3KA (2.121)

which is also, therefore,

h =











h0 hA1 hA2 hA3

hA1 h0 −hA3 −hA2

hA2 −hA3 h0 −hA1

hA3 −hA2 −hA1 h0











(2.122)











w′

x′

y′

z′











= h











w

x

y

z











=











h0w + hA1x + hA2y + hA3z

hA1w + h0x− hA3y − hA2z

hA2w − hA3x + h0y − hA1z

hA3w − hA2x− hA1y + h0z











When we apply this transformation operator, h, to our
quaternion 4-space point, q = (w, x, y, z), this transforms
the coordinates into the new point, q′ = (w′, x′, y′, z′).

The z-hand inverse normalizing factor, N4
Z , is similar

to the m-hand factor, N4
M , in (2.80), except the corre-

spondence with the [aij ] matrix components in (2.35) is
very different from that presented in (2.71),

a2 − b2 = (a− b)(a + b) (2.123)

=
[

(h2
0 + h2

Z1 − h2
Z2 − h2

Z3)− (2h0hZ1 + 2hZ2hZ3)
]

×
[

(h2
0 + h2

Z1 − h2
Z2 − h2

Z3) + (2h0hZ1 + 2hZ2hZ3)
]

= [h0 − hZ1 − hZ2 − hZ3]

× [h0 − hZ1 + hZ2 + hZ3]

× [h0 + hZ1 − hZ2 + hZ3]

× [h0 + hZ1 + hZ2 − hZ3]

= α0α1α2α3 (2.124)

4α0 =

+a00 + a01 + a02 + a03

+a10 + a11 + a12 + a13

+a20 + a21 + a22 + a23

+a30 + a31 + a32 + a33

4α1 =

+a00 + a01 − a02 − a03

+a10 + a11 − a12 − a13

−a20 − a21 + a22 + a23

−a30 − a31 + a32 + a33

4α2 =

+a00 − a01 + a02 − a03

−a10 + a11 − a12 + a13

+a20 − a21 + a22 − a23

−a30 + a31 − a32 + a33

4α3 =

+a00 − a01 − a02 + a03

−a10 + a11 + a12 − a13

−a20 + a21 + a22 − a23

+a30 − a31 − a32 + a33

Here the normalizing factor is the product of four
parameters, α0α1α2α3, which are no longer simply
the product of diagonal elements, instead each para-
meter is 1

4
of the sum of all the components of the

matrix [aij ] with 8 sign changes in three of the sums.

Let us say that our z-h number is the usual,

h = h0E + hZ1IZ + hZ2JZ + hZ3KZ (2.125)

which is also, therefore,

h =











h0 −hZ1 −hZ2 −hZ3

−hZ1 h0 −hZ3 −hZ2

−hZ2 −hZ3 h0 −hZ1

−hZ3 −hZ2 −hZ1 h0











(2.126)











w′

x′

y′

z′











= h











w

x

y

z











=











h0w − hZ1x− hZ2y − hZ3z

−hZ1w + h0x− hZ3y − hZ2z

−hZ2w − hZ3x + h0y − hZ1z

−hZ3w − hZ2x− hZ1y + h0z











When we apply this transformation operator, h, to our
quaternion 4-space point, q = (w, x, y, z), this transforms
the coordinates into the new point, q′ = (w′, x′, y′, z′).
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Invariant Quartic Forms. Like the m-h numbers,
neither the a-h nor the z-h preserve distances. Unlike
the m-h numbers, neither the a-h nor the z-h preserve
4-volumes. Instead, the a-h preserves the quantity mea-
sured by the same quartic norm expression in (2.80).

N4
A(w, x, y, z) ≡ (+w − x− y − z) (2.127)

× (+w − x + y + z)

× (+w + x− y + z)

× (+w + x + y − z)

≡ N4
Z(w, x, y, z) (2.128)

To see this, note that under the a-h transformation
presented in (2.122), the coordinates (w, x, y, z) become
(w′, x′, y′, z′), and the following four identities hold,

w′ − x′ − y′ − z′ = (h0 − hA1 − hA2 − hA3)

× (w − x− y − z)

w′ − x′ + y′ + z′ = (h0 − hA1 + hA2 + hA3)

× (w − x + y + z) (2.129)

w′ + x′ − y′ + z′ = (h0 + hA1 − hA2 + hA3)

× (w + x− y + z)

w′ + x′ + y′ − z′ = (h0 + hA1 + hA2 − hA3)

× (w + x + y − z)

therefore we have the identity,

N4
A(w′, x′, y′, z′) = N4

A(h0, hA1, hA2, hA3) ·N4
A(w, x, y, z)

= α0α1α2α3 ·N4
A(w, x, y, z) (2.130)

So, now, when the normalizing factor is 1, i.e.
N4

A(h0, hA1, hA2, hA3) = α0α1α2α3 = 1, then the form of
the quartic norm is an invariant quantity for the trans-
forming coordinates, N4

A(w′, x′, y′, z′) = N4
A(w, x, y, z).

square norm. Perhaps the most important property
of the r-h square norm given in equation (2.79) is the
“four squares rule”, which says that the product of

two sums of four squares is the sum of four squares. If
we’re given two r-h quaternions, h and g, and we the let,
N2

R(h) ≡ N2
R(h0, hR1, hR2, hR3), we can write this rule,

N2
R(h)N2

R(g) = N2
R(hg) (2.131)

From the results above, we now see that a somewhat
similar rule holds for the a-h quartic norm. If we’re
given two a-h numbers, h and g, and we similarly let,
N4

A(h) ≡ N4
A(h0, hA1, hA2, hA3), we can write the corre-

sponding quartic rule for the product of four sums,

N4
A(h)N4

A(g) = N4
A(hg) (2.132)

Note that the r-h square norm and the a-h quartic

norm are each the actual normalizing factors for con-
struction of the inverses for the respective 4-d hyper-
complex numbers, and at the same time, are the invari-
ant forms relevant for the transforming coordinates. The
same cannot be said for the m-h and z-h numbers, but
the l-h numbers are similar in this respect to the r-h.

Now, the z-h numbers do not preserve a coordinate
space quantity measured by this quartic norm expres-
sion, but rather a different complementary fourth power
form is held invariant instead. Consider the following
alternative quartic form,

Q4
Z(w, x, y, z) ≡ (+w + x + y + z) (2.133)

× (−w − x + y + z)

× (−w + x− y + z)

× (−w + x + y − z)

Under the z-h transformation presented in (2.126), the
coordinates (w, x, y, z) become (w′, x′, y′, z′), and the fol-
lowing identities hold,

+w′ + x′ + y′ + z′ = (h0 − hZ1 − hZ2 − hZ3)

× (+w + x + y + z)

−w′ − x′ + y′ + z′ = (h0 − hZ1 + hZ2 + hZ3)

× (−w − x + y + z) (2.134)

−w′ + x′ − y′ + z′ = (h0 + hZ1 − hZ2 + hZ3)

× (−w + x− y + z)

−w′ + x′ + y′ − z′ = (h0 + hZ1 + hZ2 − hZ3)

× (−w + x + y − z)

therefore we have the identity,

Q4
Z(w′, x′, y′, z′) = N4

Z(h0, hZ1, hZ2, hZ3) ·Q4
Z(w, x, y, z)

= α0α1α2α3 ·Q4
Z(w, x, y, z) (2.135)

So, now, when the normalizing factor is 1, i.e.
N4

Z(h0, hZ1, hZ2, hZ3) = α0α1α2α3 = 1, then it is
the alternative quartic form, Q4

Z , that is an invariant
quantity, this time, Q4

Z(w′, x′, y′, z′) = Q4
Z(w, x, y, z).

quartic norm. From eq (2.135), by applying two
z-h transformations in succession, we can demonstrate
that a rule of the form (2.132) holds for these num-
bers, when, for a given z-h number, h, we let, N4

Z(h) ≡
N4

Z(h0, hZ1, hZ2, hZ3). And again, it’s trivial to see
from (2.83) that the m-h numbers also obey this rule,
when, for a given m-h number, h, we let, N4

M (h) ≡
N4

M (h0, hM1, hM2, hM3). We may state this rule of the
quartic norm thus—The product of two products of four

sums is the product four sums with the same form—it
being understood that the form is that specified in the
definition of the norm. Now let’s define,

Q4
M = wxyz (2.136)

Q4
A = N4

A(w, x, y, z) (2.137)

Q4
Z = Q4

Z(w, x, y, z) (2.138)

S2
R = N2

R(w, x, y, z) (2.139)

S2
L = N2

L(w, x, y, z) (2.140)



19

Given that the form of the norm is not always the same
as the form of some coordinate space measure which
turns out to be invariant under the transformation,
we give the invariant quantities their own symbols,
Q4

M , Q4
A, Q4

Z , S2
R, S2

L, defined by these expressions above.

It may be interesting to note that the r-l basis
elements are of order 4, i.e. they have, u4 = 1, and here
we have an invariant quantity which is a polynomial of
order 2, while the m-a-z basis elements are of order 2,
i.e. they have, u2 = 1, and in this case we have invariant
quantities which are polynomials of order 4.

Image Volumes. While the a-h and z-h transforma-
tions do not preserve the 4-volume of the object, like the
m-h numbers do, they nevertheless preserve the 4-volume
of a special image of the object. Consider, for example,
the coordinate transformation,

(2.141)0BBB�W

X

Y

Z

1CCCA =

0BBB�+1 −1 −1 −1

+1 −1 +1 +1

+1 +1 −1 +1

+1 +1 +1 −1

1CCCA0BBB�w

x

y

z

1CCCA =

0BBB�+w − x − y − z

+w − x + y + z

+w + x − y + z

+w + x + y − z

1CCCA
This transformation sets up image points in a new
coordinate space, corresponding to points in our original
space. An object in our space will have an image
in this corresponding space. Whenever the object is
transformed in our space, (w, x, y, z) 7→ (w′, x′, y′, z′),
its image will also be transformed in the corresponding
space, (W, X, Y, Z) 7→ (W ′, X ′, Y ′, Z ′). When we apply
the a-h number transform, h, to the coordinates,
(w, x, y, z), the 4-volume in the new space becomes,

W ′X ′Y ′Z ′ = N4
A(h) ·WXY Z (2.142)

so that when the a-h quartic norm is 1, i.e.
N4

A(h) = α0α1α2α3 = 1, the 4-volume of this im-
age is unchanged by the transformation. The image
undergoes the type of cuboid shape shift as if being
transformed by an m-h number instead.

A similar situation holds for the z-h numbers. Con-
sider the alternative coordinate transformation,

(2.143)0BBB�W

X

Y

Z

1CCCA =

0BBB�+1 +1 +1 +1

−1 −1 +1 +1

−1 +1 −1 +1

−1 +1 +1 −1

1CCCA0BBB�w

x

y

z

1CCCA =

0BBB�+w + x + y + z

−w − x + y + z

−w + x − y + z

−w + x + y − z

1CCCA
This transformation also sets up image points in
another new coordinate space, corresponding to
points in our original space. An object in our space
will also have a second image therefore in this new
space. Whenever the object is transformed in our

space, (w, x, y, z) 7→ (w′, x′, y′, z′), its second image
will also be transformed in the corresponding space,
(W, X, Y, Z) 7→ (W ′, X ′, Y ′, Z ′). When we apply the z-h
number transform, h, to the coordinates, (w, x, y, z), the
4-volume in the new alternate space becomes,

W ′X ′Y ′Z ′ = N4
Z(h) ·WXY Z (2.144)

Now, when the z-h quartic norm is 1, i.e.
N4

Z(h) = α0α1α2α3 = 1, the 4-volume of this im-
age is unchanged by the transformation. The image
once more undergoes the type of cuboid shape shift as if
being transformed by an m-h number instead.

The significance of the invariants, Q4
A and Q4

Z , is
now apparent. The existence of such invariant forms
implicate the existence of parallel corresponding spaces
where the transforms can be described in simpler
terms—non-proportional scale changes—there being
a fixed transform connecting the object space with
the image spaces where descriptions are more easily
understood. The contorted shape shifting of the object
in its own space, involving reflections, inversions, and
scale changes, is then dissected into its component
parts, separating its rather more complicated inverting
profile from its size distortions, so that the scale change
can be presented by itself. Then we discover that this
non-proportional scale change is the only variable in
the transformation. The other component parts of
the transformation are fixed and don’t depend on the
coefficients of the transformation operator at all.

These two image spaces are themselves obtained via
matrices which are actually inverses of each other. This
is easily seen by multiplying the two coordinate transform
matrices together.

(2.145)0BBB�+1 −1 −1 −1

+1 −1 +1 +1

+1 +1 −1 +1

+1 +1 +1 −1

1CCCA0BBB�+1 +1 +1 +1

−1 −1 +1 +1

−1 +1 −1 +1

−1 +1 +1 −1

1CCCA =

0BBB�4 0 0 0

0 4 0 0

0 0 4 0

0 0 0 4

1CCCA
The fixed coordinate transform in the first case is
practically the inverse of the fixed coordinate transform
in the second case, except for an overall scale factor
of 4. We can therefore define a transform matrix with
an extra normalizing factor of 1/2 to make these exact
inverses of each other. Let’s call the new matrix, T .

(2.146)

T =
1

2

0BBB�+1 −1 −1 −1

+1 −1 +1 +1

+1 +1 −1 +1

+1 +1 +1 −1

1CCCA , T
−1 =

1

2

0BBB�+1 +1 +1 +1

−1 −1 +1 +1

−1 +1 −1 +1

−1 +1 +1 −1

1CCCA
Now we re-define the coordinate transformations to

those two image spaces, and except for the extra 1/2
that appears in the formulas the results are basically the
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same—the 4-volumes in the image spaces are still invari-
ant when the quartic norms are 1. Only now, we have,

a-h image space.0BBB�W

X

Y

Z

1CCCA = T

0BBB�w

x

y

z

1CCCA =
1

2

0BBB�+w − x − y − z

+w − x + y + z

+w + x − y + z

+w + x + y − z

1CCCA (2.147)

z-h image space.0BBB�W

X

Y

Z

1CCCA = T
−1

0BBB�w

x

y

z

1CCCA =
1

2

0BBB�+w + x + y + z

−w − x + y + z

−w + x − y + z

−w + x + y − z

1CCCA (2.148)

Now, for the a-h case, WXY Z= 1

16
· Q4

A(w, x, y, z),

and WXY Z= 1

16
· Q4

Z(w, x, y, z), for the z-h case. The
4-volumes are reduced by a factor of 1/16, but are
otherwise the same.

Given that inverse transformations, T and T−1,
map the coordinates to these two image spaces, the
image of the object in each of these image spaces are
in some sense reverse images of each other. If the
image of the object skews to the left in one image space,
it skews to the right in the other image space instead.

a-h case. If we transform (w, x, y, z) into the the
image (W, X, Y, Z), then multiply by a m-h number, then
transform the (W ′, X′, Y ′, Z′) back into (w′, x′, y′, z′) of
our coordinate space, we’ll have exactly the same effect
as multiplying by an a-h number in the object’s space.

hA = T−1hMT (2.149)

hM = h0E + h1IM + h2JM + h3KM

hA = h0E + h1IA + h2JA + h3KA

This basically means that the four “variable” co-
efficients of the a-h number, {h0, h1, h2, h3}, are
all parameters that describe the non-proportional

scaling component of the shape shift, while the four
unchanging basis elements, {E, IA, JA, KA}, are all
that’s left to describe the other components of the trans-
formation, like reflections, inversions, shears and skews.
Therefore, these latter type of changes to the object
comprise a “fixed” transformation, independent of these
variable coefficients, that holds for all transformations of
the a-h type, and that can then be separated by single
fixed transform, of the type, T , to reveal the true effect
of different a-h numbers on the object’s coordinates.
One a-h number is differentiated from another a-h
number, solely by the scaling transform of m-h type

hidden within its rather more complex representation.

z-h case. Again, if we transform (w, x, y, z) into
the the image (W, X, Y, Z), then multiply by a m-h
number, then transform the (W ′, X′, Y ′, Z′) back into
(w′, x′, y′, z′) of our coordinate space, we’ll have exactly
the same effect as multiplying by an z-h number in the
object’s space.

hZ = ThMT−1 (2.150)

hM = h0E + h1IM + h2JM + h3KM

hZ = h0E + h1IZ + h2JZ + h3KZ

The situation is analogous to the a-h transform. Only
the scale change distinguishes one z-h number from
another. The z-h generates a variable non-proportional
scale change together with a fixed component made
up of reflections, inversions, shears and skews. But,
essentially, it disguises a cuboid type shape shift that is
really identical to that produced by the m-h numbers.

These three m-a-z middle-hand numbers then, not
only have cuboid type weight factors for the construction
of their inverses, they all also generate shape shifting
transformations that are essentially cuboid type scale
changes at the core.

x-hands. The m-a-z numbers are not the only
commutative 4-d hypercomplex sub-algebras of the
hexpe system. If we cross these hands we obtain three
more similar algebras. Say we pick any one of the
the three sets of four basis elements, {E, IM , IA, IZ},
{E, JM , JA, JZ}, {E, KM , KA, KZ}, and re-label the
four elements, {E, I, J, K}, respectively. Then we’d have
another commutative hypercomplex number with the
product rules,

E2 = +E,

I2 = J2 = K2 = E, IJ = JI = K, (2.151)

JK = KJ = I, KI = IK = J.

x1-h. Consider then, the following number,

h = h0E + hM1IM + hA1IA + hZ1IZ (2.152)

which is also, therefore,

h =











h0 − hM1 hA1 − hZ1 0 0

hA1 − hZ1 h0 − hM1 0 0

0 0 h0 + hM1 −hA1 − hZ1

0 0 −hA1 − hZ1 h0 + hM1













21

When we apply this transformation operator, h, to our
quaternion 4-space point, q = (w, x, y, z), this transforms
the coordinates into the new point, q′ = (w′, x′, y′, z′).










w′

x′

y′

z′











= h











w

x

y

z











=











(h0 − hM1)w + (hA1 − hZ1)x

(hA1 − hZ1)w + (h0 − hM1)x

(h0 + hM1)y − (hA1 + hZ1)z

−(hA1 + hZ1)y + (h0 + hM1)z











and the coordinates now have an invariant quantity given
by the following quartic form,

Q4
X1(w, x, y, z) ≡ (+w + x) (2.153)

× (+w − x)

× (+y + z)

× (+y − z)

≡ (w2 − x2)(y2 − z2)

We can see this by verifying that when the coordinates
(w, x, y, z) become (w′, x′, y′, z′), the following four iden-
tities hold,

w′ + x′ = (h0 − hM1 + hA1 − hZ1)

× (w + x)

w′ − x′ = (h0 − hM1 − hA1 + hZ1)

× (w − x) (2.154)

y′ + z′ = (h0 + hM1 − hA1 − hZ1)

× (y + z)

y′ − z′ = (h0 + hM1 + hA1 + hZ1)

× (y − z)

therefore we have the identity,

Q4
X1(w

′, x′, y′, z′) = N4
X1(h0, hM1, hA1, hZ1) ·Q4

X1(w, x, y, z)

= α0α1α2α3 ·Q4
X1(w, x, y, z) (2.155)

Where the normalizing factor, N4
X1, has the definition,

N4
X1(w, x, y, z) ≡ (+w + x + y + z)

× (−w − x + y + z)

× (−w + x− y + z) (2.156)

× (−w + x + y − z)

×−1

and except for the overall extra minus sign, −1, this is
the same form as Q4

Z , given in (2.133). Now to see that
this is indeed the correct normalizing factor, lets compute
the inverse of this hexpe number. We start with the h
number in (2.152), flip a pair of signs, and define a new
number,

g = h0E + hM1IM − hA1IA − hZ1IZ (2.157)

then take the product, gh,

gh = (h2
0 + h2

M1 − h2
A1 − h2

Z1)E (2.158)

+ (2h0hM1 − 2hA1hZ1)IM

Now define the usual, f = (aE − bIM ), complementary
factor,

f = (h2
0 + h2

M1 − h2
A1 − h2

Z1)E (2.159)

− (2h0hM1 − 2hA1hZ1)IM

and take the product, fgh,

fgh = (a2 − b2)E (2.160)

where

a = (h2
0 + h2

M1 − h2
A1 − h2

Z1) (2.161)

b = (2h0hM1 − 2hA1hZ1) (2.162)

This result is similar to that obtained in (2.50-52),
except we have, −2hA1hZ1, here in the new expression
for b, where the previous result was, +2hM2hM3. This
occurs because the form of our commutative rule is now,
JK = +I, instead of, JK = −I, etc., so there are subtle
sign changes to our new expressions.

Our inverse, h−1 is given by the usual product, fg,
divided by this normalizing factor, (a2 − b2),

h−1 =
w0E + w1IM1 + w2IA1 + w3IZ1

a2 − b2
(2.163)

where

a2 − b2 = h4
0 + h4

M1 + h4
A1 + h4

Z1 (2.164)

− 2h2
0h

2
M1 − 2h2

0h
2
A1 − 2h2

0h
2
Z1

− 2h2
A1h

2
Z1 − 2h2

M1h
2
Z1 − 2h2

M1h
2
A1

+ 8h0hM1hA1hZ1

and,

w0 = h3
0 − h0(h

2
M1 + h2

A1 + h2
Z1) + 2hM1hA1hZ1

w1 = h3
M1 − hM1(h

2
0 + h2

A1 + h2
Z1) + 2h0hA1hZ1

w2 = h3
A1 − hA1(h

2
M1 + h2

0 + h2
Z1) + 2hM1h0hZ1

w3 = h3
Z1 − hZ1(h

2
M1 + h2

A1 + h2
0) + 2hM1hA1h0

The normalizing factor can also be written,

a2 − b2 = (a− b)(a + b) (2.165)

= [(h2
0 + h2

M1 − h2
A1 − h2

Z1)− (2h0hM1 − 2hA1hZ1)]

× [(h2
0 + h2

M1 − h2
A1 − h2

Z1) + (2h0hM1 − 2hA1hZ1)]

= [h0 − hM1 − hA1 + hZ1]

× [h0 − hM1 + hA1 − hZ1]

× [h0 + hM1 − hA1 − hZ1]

× [h0 + hM1 + hA1 + hZ1]

= α0α1α2α3 (2.166)

A similar analysis can be done for the x2-h de-
fined by {E, JM , JA, JZ}, and the x3-h defined by
{E, KM , KA, KZ}. These x-hands are all cuboid scal-
ing like the pure m-a-z numbers, and by inverting one
or three imaginary axes we can show they are in fact
isomorphic to the middle-hand numbers given in (2.32).
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The General Inverse. Now that we’ve seen a few
simple special case examples, let’s return to the mul-
tiplicative inverse of the most general hexpe number
of the form, h, given in (2.34). Let this inverse be,
h−1 =

∑

P h′
P EP , where, P ∈ {0, R1, R2, ...,A1, ..., Z3}, so,

h−1 = h′
0E (2.167)

+ h′
R1IR + h′

R2JR + h′
R3KR

+ h′
L1IL + h′

L2JL + h′
L3KL

+ h′
M1IM + h′

M2JM + h′
M3KM

+ h′
A1IA + h′

A2JA + h′
A3KA

+ h′
Z1IZ + h′

Z2JZ + h′
Z3KZ

Now, if we write the hexpe number, h, in the matrix form
[aij ], then invert this matrix to get, [aij ]

−1 = [Fji]/d,
where, d = det([aij ]), then we can write h−1, in the
form,

h−1 = (w0E (2.168)

+ wR1IR + wR2JR + wR3KR

+ wL1IL + wL2JL + wL3KL

+ wM1IM + wM2JM + wM3KM

+ wA1IA + wA2JA + wA3KA

+ wZ1IZ + wZ2JZ + wZ3KZ)/d

where we’ve expressed the h′
P coefficients in terms of

weight factors divided by the determinant, h′
P = wP /d.

This determinant, d, is now our normalizing factor.

The wP weight factors are constructed from the cofac-
tor components, Fij , which are themselves determined
from the original matrix components, aij , by taking the
Minors with alternating signs, Fij = (−1)i+jMij . Thus
we simply take the equations (2.37), replace the “a”
letters with “F” and remember to swap the the digits
in the index subscripts, because we need to transpose
the cofactor to use its components here. Next, replace
the “F” with “M”, remembering to change the signs
wherever the index pair has an odd sum, then replace
the Minors with their a-component expressions. Finally,
we replace the a-components with the h-coefficient
expressions in (2.36) of the original hexpe number.

Our weight factors are then expressed in terms of the
original hexpe coefficients,

wP = wP (h0, hR1, . . . , hZ3) (2.169)

The results and these intermediate substitutions are
illustrated in (table t.3 ).

The weight factors, wP , all have the familiar cubic form
we met before. Each factor is the sum of the usual cube,
square cuboid, and general cuboid expressions. But, this
time the square cuboid has 15 squares instead of 3, and
the general cuboid has a corresponding 15 terms, so that
a total of 31 terms make up the summation expression
for each weight factor. Nevertheless, the form is familiar.

. h2
M1 h2

M2 h2
M3 h2

R1 h2
R2 h2

R3 h2
L1 h2

L2 h2
L3 h2

A1 h2
A2 h2

A3 h2
Z1 h2

Z2 h2
Z3

w0 + + + − − − − − − + + + + + +

wM1 + + + − + + − + + + − − + − −

wM2 + + + + − + + − + − + − − + −

wM3 + + + + + − + + − − − + − − +

wR1 + − − + + + − − − − − + − + −

wR2 − + − + + + − − − + − − − − +

wR3 − − + + + + − − − − + − + − −

wL1 + − − − − − + + + − + − − − −

wL2 − + − − − − + + + − − + + − −

wL3 − − + − − − + + + + − − − + −

wA1 + − − + − + + + − + + + + − −

wA2 − + − + + − − + + + + + − + −

wA3 − − + − + + + − + + + + − − +

wZ1 + − − + + − + − + + − − + + +

wZ2 − + − − + + + + − − + − + + +

wZ3 − − + + − + − + + − − + + + +

The signs sP,α on the square terms.

wP = h3
P − hP

∑

α

sP,αh2
α − 2

∑

αβγ

sP,αβγhαhβhγ

The first term is the cube of the corresponding, hP ,
coefficient. Next come the sum of 15 terms that make up
the square cuboid. The signs, sP,α, on these squares are
easy to recall. First we notice that all the imaginary co-
efficients are present among these squares in the formula
for w0. The signs on the squares are positive for the
m-a-z order 2 elements (e2 = +1), and negative for the
r-l order 4 quaternions (e2 = −1). Then, to determine
the formula for another weight factor, wP , we first mod-
ify the signs according to the table given above on the
15 elements, then substitute the hP coefficient among
these 15 squares with h0. Note which signs change
according to the chosen p. Finally, the third part of
the expression consisting of 15 general cuboid terms are
included. These results are presented in (table t.3-IV ).

The normalizing factor, d, which is the determinant
of the 4 × 4 matrix form for the hexpe number, can be
written in simple form in terms of the h-coefficients and
these weight factors.

d = h0 · w0

+ hM1 · wM1 + hM2 · wM2 + hM3 · wM3

+ hA1 · wA1 + hA2 · wA2 + hA3 · wA3

+ hZ1 · wZ1 + hZ2 · wZ2 + hZ3 · wZ3

− hR1 · wR1 − hR2 · wR2 − hR3 · wR3

− hL1 · wL1 − hL2 · wL2 − hL3 · wL3

(2.170)

= h0 · w0 −
∑

k=1,2,3

(hRk · wRk + hLk · wLk)

+
∑

k=1,2,3

(hMk · wMk + hAk · wAk + hZk · wZk)

Note again, the + signs on the m-a-z, and - signs on the
r-l. This suggests we may write,

d =
∑

P

hP wP EP ·EP =
∑

P

(hP EP ) · (wP EP )

or, even define a “dot product” for hexpe, d = h ◦w.
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The Bilateral Factor. Let us review equation (2.29)
again, which we’ll write here in our newer basis labels
and coefficient notation,

(2.171)

(h0E + hR1IR + hR2JR + hR3KR + hL1IL + hL2JL + hL3KL)q

= C

We’ll refer to this combined parameter with right and
left terms in parenthesis as the bilateral factor.
There are no terms from the m-a-z numbers appearing
here, just r-l coefficients. We can now use the general
hexpe inverse formula, we just presented, to find the
corresponding multiplicative inverse for this special
number. When the scalar coefficient, h0, is zero,
the inverse will likewise only contain r-l terms, but
otherwise the m-a-z terms will also appear in the inverse.

Let us now use the letter, A, to represent this bilateral
factor, so A−1 will be our inverse. Our equation is of
the form, Aq = C. We can therefore write, q = A−1C.
The formula for this inverse is shown on the right. ⇒
Now, A−1 is an hexpe number in 4 × 4 matrix for-
mat, but, q and C are quaternions in 4×1 matrix format.

We would like to express these two quaternions, q, C,
in 4 × 4 matrix format also, so that all the parameters
in our equation have the same consistent uniform rep-
resentation. Recall, that we started out with equations
like (2.1), where all the quaternion parameters were
given in one consistent representation—the elemental
right-hand basis {1, i, j, k}. And we know that we may
substitute any other right-hand basis representation, like
{E, IR, JR, KR}, for the basis elements in the equation’s
parameters, and obtain an equivalent statement of the
problem, whose solution has the same component values.

Therefore, if we can write down and solve this equa-
tion entirely in the 4 × 4 matrix format, we can adopt
the methods discovered, to solve the same problem once
again, in the elemental, {1, i, j, k}, basis format, and
so dispense with the matrix method altogether. The
algebra of matrices then being considered simply the
tool to discover just what is lacking in the quaternion
algebra, that prevents us from solving these linear
equations entirely within the quaternion system alone.

So, here’s the essential idea. First we solve, Aq = C,
q = A−1C, with q and C in column vector format. Then
write, q = q0E + q1IR + q2JR + q3KR, and see if we can
find that new 4 × 4 parameter, H , such that, Hq = C,
where, C = c0E+c1IR +c2JR +c3KR. Then work out a
transformation between H and A. That should help us
discover the steps required to modify quaternion algebra
to represent and solve this problem. We should be able
to write, H = Cq−1, since q and C are now both 4 × 4
matrices. The q-coefficients are expressed in terms of ck,
hj , while the A-components are only in terms of hj .

Bilateral factor’s Inverse formula;

w0 = +h3

0 + h0(+h2

R1
+ h2

R2
+ h2

R3
+ h2

L1
+ h2

L2
+ h2

L3
)

wR1 = −h3

R1
+ hR1(−h2

0 − h2

R2
− h2

R3
+ h2

L1
+ h2

L2
+ h2

L3
)

wR2 = −h3

R2
+ hR2(−h2

R1
− h2

0 − h2

R3
+ h2

L1
+ h2

L2
+ h2

L3
)

wR3 = −h3

R3
+ hR3(−h2

R1
− h2

R2
− h2

0 + h2

L1
+ h2

L2
+ h2

L3
)

wL1 = −h3

L1
+ hL1(+h2

R1
+ h2

R2
+ h2

R3
− h2

0 − h2

L2
− h2

L3
)

wL2 = −h3

L2
+ hL2(+h2

R1
+ h2

R2
+ h2

R3
− h2

L1
− h2

0 − h2

L3
)

wL3 = −h3

L3
+ hL3(+h2

R1
+ h2

R2
+ h2

R3
− h2

L1
− h2

L2
− h2

0)

wM1 = +2(+h0hR1hL1)

wM2 = +2(+h0hR2hL2)

wM3 = +2(+h0hR3hL3)

wA1 = +2(+h0hR2hL3)

wA2 = +2(+h0hR3hL1)

wA3 = +2(+h0hR1hL2)

wZ1 = +2(+h0hR3hL2)

wZ2 = +2(+h0hR1hL3)

wZ3 = +2(+h0hR2hL1)

A−1 =

(w0E

+wR1IR + wR2JR + wR3KR

+wL1IL + wL2JL + wL3KL

+wM1IM + wM2JM + wM3KM

+wA1IA + wA2JA + wA3KA

+wZ1IZ + wZ2JZ + wZ3KZ )/d

where,

d = h0w0 −Pk(hRkwRk + hLkwLk)

For example,

Cq−1 =
(c0E + c1IR + c2JR + c3KR)

1

(q0E − q1IR − q2JR − q3KR)

q2

0
+ q2

1
+ q2

2
+ q2

3

(2.172)

So, either the ck cancel each other in the formation
of H = Cq−1, or we anticipate we’d have some kind
of transformation from A to H that involves a C-type
factor, like H = TA, or H = AT , or H = TAT−1, or
some combination of these, where T is a function of C
only, T = T (C). This investigative approach leads to
some interesting insights, which the reader may explore.
However, it helps to start with an even simpler problem,
so here we shall follow a variation of this general method,
which ends up transforming Aq = C into A ⊗ q = C,
with the introduction of a new multiplication operator
⊗, instead of Hq = C, or settling for the idea of keeping
this dual representation for the quaternion parameters.
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Consider a simplified bilateral factor equation;

(h0E + hR1IR + hL1IL)q = C (2.173)

This equation has the form Aq = C, with the two quater-
nions, q and C, in column vector format, and the bilateral
factor A is now the 4× 4 matrix;

A = h0E + hR1IR + hL1IL (2.174)

To find the inverse of this hexpe number, we first define
a new number that flips the signs on the imaginary units,
very much like the idea of the conjugate,

g = h0E − hR1IR − hL1IL (2.175)

then construct the product, gA, to get,

gA = (h2
0 + h2

R1 + h2
L1)E − 2hR1hL1IM (2.176)

Recognizing the form (aE − bIM ), we use the standard
algebraic formula (x2 − y2) = (x + y)(x − y) to com-
plete the construction of the inverse, by first defining a
complementary factor, f = (aE + bIM ), so

f = (h2
0 + h2

R1 + h2
L1)E + 2hR1hL1IM (2.177)

Then the product, fgA, is proportional to E,

fgA = (a2 − b2)E (2.178)

where

a = (h2
0 + h2

R1 + h2
L1) (2.179)

b = 2hR1hL1 (2.180)

Our inverse is then given by the product, fg, divided by
the normalizing factor, (a2 − b2), so that,

A−1 =
w0E + w1IR + w2IL + w3IM

a2 − b2
(2.181)

where

a2 − b2 = (h2
0 + h2

R1 + h2
L1)

2 − 4h2
R1h

2
L1 (2.182)

and,

w0 = h0(h
2
0 + h2

R1 + h2
L1)

w1 = hR1(h
2
L1 − h2

R1 − h2
0)

w2 = hL1(h
2
R1 − h2

L1 − h2
0)

w3 = 2h0hR1hL1

If we define new coefficients w′
k = wk/(a2 − b2) where

k = 0, 1, 2, we can write this inverse,

A−1 = w′
0E + w′

1IR + w′
2IL + w′

3IM (2.183)

Now the solution to the equation becomes,

q = A−1C (2.184)

q = (w′
0E + w′

1IR + w′
2IL + w′

3IM )C (2.185)

q = w′
0EC + w′

1IRC + w′
2ILC + w′

3IMC (2.186)

Since, q and C, are in column vector format, this is,

q = w′
0E

0BBB�c0

c1

c2

c3

1CCCA+ w′
1IR

0BBB� c0

c1

c2

c3

1CCCA+ w′
2IL

0BBB�c0

c1

c2

c3

1CCCA+ w′
3IM

0BBB�c0

c1

c2

c3

1CCCA
(2.187)

contracting the matrix products, EC, IRC, ILC, and
IMC, we have,

q = w′
0

0BBB�c0

c1

c2

c3

1CCCA+ w′
1

0BBB�−c1

c0

−c3

c2

1CCCA+ w′
2

0BBB�−c1

c0

c3

−c2

1CCCA+ w′
3

0BBB�−c0

−c1

c2

c3

1CCCA
(2.188)

We can write this as the single column vector,

q =











w′
0c0 − w′

1c1 − w′
2c1 − w′

3c0

w′
0c1 + w′

1c0 + w′
2c0 − w′

3c1

w′
0c2 − w′

1c3 + w′
2c3 + w′

3c2

w′
0c3 + w′

1c2 − w′
2c2 + w′

3c3











(2.189)

and this column vector is equivalent to the quaternion
with right-hand elements {1, i, j, k}, so we have,

q = (w′
0c0 − w′

1c1 − w′
2c1 − w′

3c0) .1

+ (w′
0c1 + w′

1c0 + w′
2c0 − w′

3c1) .i (2.190)

+ (w′
0c2 − w′

1c3 + w′
2c3 + w′

3c2) .j

+ (w′
0c3 + w′

1c2 − w′
2c2 + w′

3c3) .k

we can re-arrange this equation,

q = w′
0 (c0.1 + c1.i + c2.j + c3.k)

+ w′
1 (−c1.1 + c0.i− c3.j + c2.k) (2.191)

+ w′
2 (−c1.1 + c0.i + c3.j − c2.k)

+ w′
3 (−c0.1− c1.i + c2.j + c3.k)

which we recognize we can write,

q = w′
0 (c0.1 + c1.i + c2.j + c3.k)

+ w′
1.i. (c0.1 + c1.i + c2.j + c3.k) (2.192)

+ w′
2 (c0.1 + c1.i + c2.j + c3.k) .i

+ w′
3.i. (c0.1 + c1.i + c2.j + c3.k) .i

or,

q = w′
0C + w′

1.i.C + w′
2C.i + w′

3i.C.i (2.193)

where now, q and C, are elemental quaternions. Since
we can replace the elemental right-hand basis elements
{1, i, j, k} by any other representation, we can now re-
write this equation in terms of the corresponding matrix
elements {E, IR, JR, KR}, which gives,

q = w′
0EC + w′

1IRC + w′
2CIR + w′

3IRCIR

with, (2.194)

q = q0E + q1IR + q2JR + q3KR

C = c0E + c1IR + c2JR + c3KR

We now have the solution written entirely in the 4 × 4
matrix representation format, and have eliminated all ref-
erence to the column vector 4× 1 matrix representation.
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To get a better picture of this transformation, let’s
add clarifying subscripts to our parameters to indicate
the current representation being used. So, q = q4×1

and C = C4×1, will idicate quaternions in column vector
form. While, q = q4×4 and C = C4×4, will tell us that
the quaternions are in square matrix form. Equations
(2.186) and (2.194) can then be re-written (IM ≡ IRIL),

q4×1 = w′
0EC4×1 + w′

1IRC4×1 + w′
2ILC4×1 + w′

3IRILC4×1

q4×4 = w′
0EC4×4 + w′

1IRC4×4 + w′
2C4×4IR + w′

3IRC4×4IR

What we notice, is that when we change the representa-
tion, from the mixed 4×1 column vector and 4×4 square
matrix state, to the pure 4× 4 square matrix form, some
of our parameters and terms convert directly to their
corresponding forms in the alternate state, while others
involve more substantial changes. The last two terms on
the r.h.s. of these equations incur the transformation,

ILC4×1 7→ C4×4IR (2.195)

In other words, the left hand basis element, IL, moves
over to the other side of the C parameter and changes
its character to become a right hand basis element, IR

instead. This is the reverse of what happens in the
initial steps when the B factor, in qB, moves over to
the other side to give us that equivalent term, B′q.
There, all the right-hand elements in B were replaced
by left-hand elements to form B′, so that the factor
could be moved to the other side. That was necessary
so that we could aggregate the factors on one side of
the unknown, q. Now that we’ve found the solution,
it’s necessary to reverse that transformation, so that we
can express everything in the right-hand basis again.
After all, the problem was initially framed in terms of
right-hand quaternions. The q, we seek, is a right-hand
quaternion. It would be nice if we could indeed work out
the solution entirely in one representation, which we’d
obviously choose to be the 4× 4 matrix.

But,

ILC4×4 6= C4×4IR (2.196)

ILC4×4 = C4×4IL (2.197)

so, we’d have a conflict within our algebra, since,
IL already has a valid product with r-h quaternions
in 4×4 matrix format—it commutes with these numbers.

To keep the representation the same, i.e. every-
thing in 4 × 4 format, we’d have to try some-
thing like splitting the multiplication operator

into two forms, for example,

IL ⊗ C4×4 ≡ C4×4IR (2.198)

IL · C4×4 ≡ C4×4IL (2.199)

Either we must split this operator into two, or we must
split the representation into two.

Splitting the representation is the technique
effectively employed by the matrix method to resolve
this conflict with the two different interpretations of the
product with left hand numbers. The single consistent
elemental representation, {1, i, j, k}, is replaced by
two different representations, a 4 × 4 square and a
4 × 1 column, and a single multiplication operator then
suffices. This problem is, of course, a consequence of
the non-abelian nature of the multiplication operator,
Z · Y 6= Y · Z, which, by its very definition, introduces
this duality into the specifications of multiplication.
How do we write, Z ′ ·Y = Y ·Z, when, if Y = Z, we’d get
Z ′ ·Z = Z ·Z, and thus, given that our algebra is an as-
sociative one, we must have, Z ′ ·Z ·Z−1 = Z, or Z ′ = Z,
which tells us immediately that[15], Z · Y = Y · Z,
contradicting the non-abelian definition of the product?

A non-abelian algebra can only resolve this paradox
by splitting the operator or splitting the representation.

If we chose the path of the split multiplication oper-
ator, we’d need to find the right constructions for the
specifications of these two products, · and ⊗, e.g;

IL ⊗ C4×4 ≡ C4×4IR (2.200)

IR ⊗ C4×4 ≡ IRC4×4 (2.201)

IL · C4×4 ≡ C4×4IL (2.202)

IR · C4×4 ≡ IRC4×4 (2.203)

where the C4×4 in these rules now represents any right
hand quaternion written in 4× 4 square matrix format.
With the above definitions, we could write the usual eqn,

Aq4×1 = C4×1 (2.204)

in the alternative form,

A⊗ q4×4 = C4×4 (2.205)

where every parameter is in the same consistent 4 × 4
matrix representation, with, now, two ways to multiply.

Splitting the operator is the path taken by the
Heaviside-Gibbs “Vector Algebra”, which replaces
the single quaternion product with dot and cross

products. But, Heaviside and Gibbs went even further
and altered the definition of the basis elements to get
positive squares, destroying the quaternion nature of
the algebra in the process, instead of enhancing it with
their extensions. Their type of operator splitting wasn’t
an effort to extend the algebra to solve quaternion prob-
lems. Rather, they sought to remove from quaternion
algebra the features they felt were hindrances to the
art. The operator splitting is, however, a much more
complex process, so we shall take the simpler solution
already presented by matrix algebra and adapt it instead.

Carets. We introduce the alternative concept of
‘pivot variables’, which are the quaternions about
which parameter movements are made.
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In our problems, these are the unknown variable and
the inhomogeneous parameter of the linear equation.

When we move a quaternion factor around a pivot
variable we either mark that pivot with a caret, or re-
move the caret, depending on which way the movements
are made, and what types of quaternions are moving
about. The caret is effectively an id substitute for the
column vector.

Lets consider a simple example. Say we’re given the
following problem to solve. We’re to find the expression
for q, given that i, q, c are all right hand quaterions from
the system {1, i, j, k}. We proceed as follows;

example 1:

(1 + i)q + qi = c ⇐ problem (2.206)

(1 + iR)q + qiR = c

(1 + iR)q̂ + iLq̂ = ĉ

(1 + iR + iL)q̂ = ĉ

(1− iR − iL)(1 + iR + iL)q̂ = (1− iR − iL)ĉ

(3− 2iM )q̂ = (1− iR − iL)ĉ

(3 + 2iM )(3 − 2iM)q̂ = (3 + 2iM )(1− iR − iL)ĉ

(9− 4)q̂ = (3− 3iR − 3iL + 2iM − 2iM iR − 2iM iL)ĉ

5q̂ = (3− iR − iL + 2iM )ĉ

5q̂ = (3− iR − iL + 2iRiL)ĉ

5q̂ = 3ĉ− iRĉ− iLĉ + 2iRiLĉ

5q = 3c− iRc− ciR + 2iRciR

5q = 3c− ic− ci + 2ici

q = (3c− ic− ci + 2ici)/5 ⇐ solution (2.207)

We mark our factors right-hand, i 7→ iR; then move
all known factors to the left, adding carets on the
pivots, q 7→ q̂, c 7→ ĉ, and converting the moving
factors from r-h to l-h; then simplify the expressions
to get the unknown q̂ by itself on one side; then we
express everything on the r.h.s in terms of r-h and l-h
quaternions; and finally, we move all l-h factors to the
right of the inhomogeneous parameter, ĉ, and change
them into r-h, removing the carets; then we drop the
r-h subscript labels, iR 7→ i, because everything is now
in the r-h system again. That’s it.

Note that we could work out this problem without ref-
erence to iM , and instead keep the product of left and
right terms in binary pair form, like iRiL, but we must at
least use both the left hand and right hand elements to
solve the problem. All other basis elements of the hexpe
algebra are generated by the r-h and l-h elements. So,
these are all we need, operationally, to work out the solu-
tions. But, the middle hand numbers—m,a,z—are often
convenient shorthand.

Consider another example, this time, instead of the
form, Aq + qB = c, we illustrate form, q + AqB = c,
with factors on both sides of the same q,

example 2:

q + 2kq(1 + i) = c ⇐ problem (2.208)

q + 2kRq(1 + iR) = c

q̂ + 2kR(1 + iL)q̂ = ĉ

(1 + 2kR + 2kRiL)q̂ = ĉ

(1 + 2kR + 2jA)q̂ = ĉ

(1 − 2kR + 2jA)(1 + 2kR + 2jA)q̂ = (1− 2kR + 2jA)ĉ

(9 + 4jA)q̂ = (1− 2kR + 2jA)ĉ

(9 − 4jA)(9 + 4jA)q̂ = (9− 4jA)(1− 2kR + 2jA)ĉ

(81− 16)q̂ = (9 − 18kR + 18jA − 4jA − 8iL − 8)ĉ

65q̂ = (1− 18kR − 8iL + 14kRiL)ĉ

65q̂ = ĉ− 18kRĉ− 8iLĉ + 14kRiLĉ

65q = c− 18kRc− 8ciR + 14kRciR

65q = c− 18kc− 8ci + 14kci

q = (c− 18kc− 8ci + 14kci)/65 ⇐ solution (2.209)

Now let’s consider a more elaborate example, with a
form like (2.1), e.g. A1qB1+A2qB2+A3qB3+A4qB4 = c.

example 3:

q + 2iqi + jqj − kqk = c ⇐ problem (2.210)

q + 2iRqiR + jRqjR − kRqkR = c

q̂ + 2iRiLq̂ + jRjLq̂ − kRkLq̂ = ĉ

(1 + 2iM + jM − kM )q̂ = ĉ

q̂ = 1/5 · (−1 + 4iM − jM + kM )ĉ

q̂ = 1/5 · (−1 + 4iRiL − jRjL + kRkL)ĉ

q̂ = 1/5 · (−ĉ + 4iRiLĉ− jRjLĉ + kRkLĉ)

q = 1/5 · (−c + 4iRciR − jRcjR + kRckL)

q = (−c + 4ici− jcj + kck)/5 ⇐ solution (2.211)

Here we could either use our sign changing algebraic
tricks to find the inverse of the the m-h number, or
simply look up the previously given formula (2.53-54),
with {h0 = 1, hM1 = 2, hM2 = 1, hM3 = −1}, to obtain
our inverse.

These examples are all simple enough to illustrate
within a few lines of text, yet intricate enough to
cover the basic ideas and demonstrate the power of the
essential technique.
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The Solution. With the mechanics of this opera-
tional method, we can now solve the original problem
presented in equation (2.1),

A1qB1 + A2qB2 + ... + AnqBn = C (2.1)

without making any direct reference to matrix algebra,
using, instead, the extended two-hand quaternion alge-
bra we’ve developed.

First we apply the associative law for r-h quaternions,
to group the pair products we’re going to transform,

A1(qB1) + A2(qB2) + ... + An(qBn) = C (2.212)

Then we convert the B-parameters to left-hand quater-
nions, B′, and move them over to the left of the variable
q, remembering to mark the q variables and inhomoge-
neous parameter C with the caret,

A1(B
′
1q̂) + A2(B

′
2q̂) + ... + An(B′

nq̂) = Ĉ (2.213)

Now we apply the associative law to group the known
parameters together into pair products,

(A1B
′
1)q̂ + (A2B

′
2)q̂ + ... + (AnB′

n)q̂ = Ĉ (2.214)

Then we apply the distributive law to aggregate the
known parameters and factor out the unknown variable,

(A1B
′
1 + A2B

′
2 + ... + AnB′

n)q̂ = Ĉ (2.215)

We determine whether this hexpe number in parenthe-
sis has an inverse, and if so, multiply both sides by the
inverse factor,

q̂ = (A1B
′
1 + A2B

′
2 + ... + AnB′

n)−1Ĉ (2.216)

The inverse, if it exists, will have the general form,

(A1B
′
1 + A2B

′
2 + ... + AnB′

n)−1 = (2.217)

P1Q
′
1 + P2Q

′
2 + ... + PmQ′

m

where the Pk are r-h quaternions, and Q′
k are l-h quater-

nions. So, we may write,

q̂ = (P1Q
′
1 + P2Q

′
2 + ... + PmQ′

m)Ĉ (2.218)

then using the distributive law we remove the parenthe-
sis,

q̂ = (P1Q
′
1)Ĉ + (P2Q

′
2)Ĉ + ... + (PmQ′

m)Ĉ (2.219)

now we apply the associative law to group the l-h quater-
nions together with the inhomogeneous parameter,

q̂ = P1(Q
′
1Ĉ) + P2(Q

′
2Ĉ) + ... + Pm(Q′

mĈ) (2.220)

and finally, we move the l-h quaternions, Q′
k, over to

the right side of the inhomogeneous parameter, where
they metamorphize into r-h quaternions, Qk, letting us

remove the carets, and since r-h quaternions are asso-
ciative we can remove the parenthesis too, and we have,

q = P1CQ1 + P2CQ2 + ... + PmCQm (2.221)

and we’re done!

Now a remark. We started out with a problem
stated entirely in Hamilton’s right hand quaternions,
and ended up with the solution which is again expressed
in the same right hand quaternions. However, the in-
termediate steps required us to deviate into the domain
of a higher dimensional hypercomplex number—in this
case the two-hand extended quaternions—in order to
work out the solution. This is entirely analogous to the
classical mathematicians discovery that to arrive at the
solutions to certain cubic equations over the reals, it was
necessary to walk the path of the complex number for
part of the way on the journey towards the real valued
solution!

Singular Solutions. When the inverse (2.217)
doesn’t exist, we are unable to find a solution with
our new method. That doesn’t mean that there’s no
solution, however. Solutions to these singular equations
may still exist. For example, iq + qi = c, results in a
singular bilateral factor in, (iR + iL)q̂ = ĉ, which is
easily seen, since (−iR − iL)(iR + iL) = (2 − 2iM), and,
(2 + 2iM )(2 − 2iM ) = (4 − 4) = 0, so (iR + iL) has
no inverse. Yet, if c = 2, then q = −i, is a solution.
Or, if c = 0, then q = j or q = k, or indeed any
q = aj + bk, a, b ∈ R, are all solutions. The multi-
solution special case, c = 0, means that when c = 2, the
complete solution is really, q = −i + aj + bk, ∀ a, b ∈ R.
To find these singular solutions, then, we have to express
the quaternions in terms of their components, and
solve the resulting set of four linear equations using
the usual methods of real algebra. The most general
solution to the equation, iq + qi = c, is then found to be,
q = c1/2− c0i/2+ aj + bk, ∀ a, b ∈ R, when c2 = c3 = 0,
and there being no solution for q if c2 6= 0 or c3 6= 0.

Left Hand q. If we start out in (2.1) with left-hand
quaternions instead of right-hand quaternions, we end up
with very similar results. The equation, Aq + qB = c,
with all parameters in l-h would be written, ALqL +
qLBL = cL, then moving the BL parameter to the left of
the qL causes it to change into a r-h quaternion, qLBL 7→
BRq̂L, and similarly, BRĉL 7→ cLBL. When we re-work
the matrix representations given in (2.22-25), this time
resolving the binary products with the left-hand basis,
ij = −k, we get, Aq = (a01 + a1I

′ + a2J
′ + a3K

′)q,
qB = (b01+b1I+b2J+b3K)q, which is the reverse of the
right hand basis results. Note that we obtain exactly the
same set of basis matrices, just reverse applications. The
left hand matrices, {1, I′, J ′, K ′}, consistently represent
l-h quaternions in either formulation; likewise, the right
hand basis matrices, {1, I, J , K}, always represents r-h
quaternions whether the column vector is r-h or l-h.
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3. GROUP STRUCTURE.

An Extended Complex Number. Given that the
hexpe number can simply be viewed as a particular de-
composition of the 4×4 square matrix into an equivalent
42-dimensional hypercomplex number, one could obvi-
ously look for similar decompositions for other N × N
square matrices where N has some value other than 4.
The number N = 4, after all, was just the result of our
search for that extension to the quaternion which would
allow us to include both right-hand and left-hand
bases in one unified system. But, the idea, of partition-
ing a square matrix into a particular set of simple lin-
early independent matrices of same order that contain
some other algebra, isn’t really dependent, in general, on
the quaternion system. As an example, we could also
decompose the 2× 2 square matrix as follows;

E =

(

1 0

0 1

)

, (3.1)

I =

(

1 0

0 −1

)

, J =

(

0 −1

1 0

)

, K =

(

0 −1

−1 0

)

This gives rise to the 4-dimensional hypercomplex alge-
bra with the anti-commuting product rules,

E2 = E, (3.2)

I2 = −J2 = K2 = E, IJ = −JI = K,

KI = −IK = −J , JK = −KJ = I

These look a bit like quaternion basis elements, given
that we have these same anti-commuting pairs, e.g.
IJ = −JI. But, while all three pairs do anti-commute,
unlike Hamilton’s numbers, they do not follow the
cyclical permuting rule among the three IJK axes.
Two pairs follow the cyclical rule, IJ = +K, and,
JK = +I, while the third is acyclical, IK = +J . It
is almost as if the right-hand rule were being mixed with
the left-hand rule in the same system. We seem to have
right-left-right, as we cyclically permute the IJK
axes, one pair product being out of step with the others.

In addition to this, these imaginary elements are
not all the square-roots of −1. In fact, only one, J ,
represents the square-root of −1. The other two, I

and K, are roots of +1, instead. This mixing of the
roots of +1 and −1, within the same 4-dimensional
hypercomplex system, reminds us of Davenport’s hy-
percomplex algebra. Only that, Davenport mixes two
imaginary roots of −1 with one imaginary root of +1,
while here we have somewhat the reverse situation, with
two imaginary roots of +1 and one imaginary root of
−1. And, of course, Davenport’s elements commute,
while these here anti-commute.

Notice again, also, that this root mixing alternates in
sync with the alternating hand mentioned above—we

have the root of +1, then of −1, then of +1, in harmony
with the right-left-right pattern found when cycli-
cally permuting the IJK elements.

We can now proceed to write down the general hyper-
complex number, h, its equivalent square matrix, [aij ],
compare coefficients hk and components aij , and apply
the procedures, as described before, to construct the mul-
tiplicative inverse, h−1.

h = h0E + h1I + h2J + h3K (3.3)

h = [aij ] =

(

a00 a01

a10 a11

)

(3.4)

a00 = +h0 + h1

a10 = +h2 − h3 (3.5)

a01 = −h2 − h3

a11 = +h0 − h1

h0 = (+a00 + a11)/2

h1 = (+a00 − a11)/2 (3.6)

h2 = (+a10 − a01)/2

h3 = (−a10 − a01)/2

det([aij ]) = (a00a11 − a10a01) (3.7)

= (h2
0 − h2

1 + h2
2 − h2

3)

[aij ]
−1 =

(

a11 −a01

−a10 a00

)

(a00a11 − a10a01)
(3.8)

so,

h−1 =
h0E − h1I − h2J − h3K

(h2
0 − h2

1 + h2
2 − h2

3)
(3.9)

This number, h, contains ordinary complex numbers as a
sub-algebra, when {h1 = 0, h3 = 0}, i.e. h = h0E +h2J .
So, we can consider this 4-dimensional hypercomplex
number to be an extension to the complex number.
The other two 2-dimensional sub-algebras, based on the
alternate numbers, h = h0E + h1I and h = h0E + h3K,
do not form complex numbers—they involve imaginary
numbers that are the roots of +1, instead of −1, and
obey different rules, like not having a multiplicative in-
verse even when h 6= 0; and gh = 0, when g 6= 0 & h 6= 0.

Because of the alternating character in the patterns of
the defining rules for this 4-dimensional hypercomplex
number, we can just as well call this particular extension,
more appropriately, the alternating complex number.

Whether we can construct useful and interesting hy-
percomplex numbers from square matrices of other orders
remains a topic for further research.
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Groups of Order 8. We recall that a Group is a
set of elements G = {e, g1, g2, ..., gn−1} with a binary
operation · defined on those elements, which satisfies the
four rules: (1) closure—where a · b is in G, if a and b
are in G; (2) identity—there exists a special unique
element e, called the identity, where e · a = a · e = a, for
all a in G; (3) associativity—for any three elements
a, b, c we have a ·(b ·c) = (a ·b)·c; and (4) inverse—every
element a in G has an inverse companion a−1 in G, for
which a−1 · a = a · a−1 = e. If in addition to these rules
we have; (5) commutativity—for every pair of elements,
a, b in G, a · b = b · a, then we call the Group Abelian,
otherwise it’s a Non-Abelian Group.

Well, the eight positive and negative quaternion basis
elements {1, i, j, k,−1,−i,−j,−k} form a Non-Abelian
Group under the operation of multiplication. And the
most useful 4-dimensional hypercomplex algebras we can
construct will have four degrees of freedom {E, I, J, K}
whose eight ± unit values form a group of some kind.

These groups of eight elements, otherwise known as
the Groups of Order 8, can only be formed in five

distinct flavors. All other groups are isomorphic to one
of these five typical groups. The usual names for these
representative groups are: Q, for the quaternions; D4,
for the 4th dihedral group, which is the group of the
symmetry transformations on the square; Z2 × Z2 × Z2,
the triple product of the cyclic group of order 2; then,
Z2 × Z4, the product of cyclic groups of orders 2 and 4;
and finally, Z8, the cyclic group of order 8. The first four
groups are represented directly among the elements of
the hexpe numbers, while the fifth can be constructed
using linear combinations of the basis elements.

(1): Q {E, IR, JR, KR}.

(2): D4 {E, IA, IR, KM}.

(3): Z2 × Z2 × Z2; {E, IM , JM , KM}.

(4): Z2 × Z4; {E, IR, IL, IM}.

(5): Z8; {E, IR, (E + IR) /
√

2, (E − IR) /
√

2}.

This basically means that the hexpe algebra con-
tains several different other 4-dimensional hypercomplex
sub-algebras. We not only have Hamilton’s Quaternions,
in r and l flavors, and those commuting middle-hand
numbers—m, a, z—which we’ve discussed at length,
but a careful examination of the elements reveal that
those commutative hypercomplex numbers studied by
Davenport, and those 4-dimensional hypercomplex num-
bers we just introduced and referred to as alternating
complex numbers, are also part of the hexpe system.

the cayley tables of
the five groups of order eight.

(1):

+ 0 1 2 3 4 5 6 7

0 0 1 2 3 4 5 6 7

1 1 0 3 2 5 4 7 6

2 2 3 1 0 6 7 5 4

3 3 2 0 1 7 6 4 5

4 4 5 7 6 1 0 2 3

5 5 4 6 7 0 1 3 2

6 6 7 4 5 3 2 1 0

7 7 6 5 4 2 3 0 1

(2):

+ 0 1 2 3 4 5 6 7

0 0 1 2 3 4 5 6 7

1 1 2 3 0 7 6 4 5

2 2 3 0 1 5 4 7 6

3 3 0 1 2 6 7 5 4

4 4 6 5 7 0 2 1 3

5 5 7 4 6 2 0 3 1

6 6 5 7 4 3 1 0 2

7 7 4 6 5 1 3 2 0

(3):

+ 0 1 2 3 4 5 6 7

0 0 1 2 3 4 5 6 7

1 1 0 3 2 5 4 7 6

2 2 3 0 1 6 7 4 5

3 3 2 1 0 7 6 5 4

4 4 5 6 7 0 1 2 3

5 5 4 7 6 1 0 3 2

6 6 7 4 5 2 3 0 1

7 7 6 5 4 3 2 1 0

(4):

+ 0 1 2 3 4 5 6 7

0 0 1 2 3 4 5 6 7

1 1 2 3 0 5 6 7 4

2 2 3 0 1 6 7 4 5

3 3 0 1 2 7 4 5 6

4 4 5 6 7 0 1 2 3

5 5 6 7 4 1 2 3 0

6 6 7 4 5 2 3 0 1

7 7 4 5 6 3 0 1 2

(5):

+ 0 1 2 3 4 5 6 7

0 0 1 2 3 4 5 6 7

1 1 2 3 4 5 6 7 0

2 2 3 4 5 6 7 0 1

3 3 4 5 6 7 0 1 2

4 4 5 6 7 0 1 2 3

5 5 6 7 0 1 2 3 4

6 6 7 0 1 2 3 4 5

7 7 0 1 2 3 4 5 6

The Product Tables of the group elements, also called

Cayley Tables, are shown here in terms of the corre-
sponding isomorphic forms using the binary + operation,

with identity element 0. The set of the first n non-
negative integers under addition modulo n forms a group

called, Zn = {r : r = a + b mod n; with a, b ∈ N0},
which is isomorphic to the cyclic group of order n, Cn,

and thus Zn is often used in place of Cn in the naming
of a group structure.

Q: This is the group of Hamilton’s Quaternions.
Although the right-hand and left-hand quaternions
are clearly distinct by virtue of their ijk handedness, the
sets of basis elements from each of these numbers still
form isomorphic groups. So, the r-h and l-h are both
considered representations of the same typical group, Q.

The concept of isomorphism does not distinguish be-
tween right and left hands. The characteristic ijk sign
is not sufficient to differentiate the left from the right,
in this context, because it is an overall characteristic of
the entire algebra, and not a measure that distinguishes
different parts of the same algebra. Isomorphism simply
checks whether the product tables of two algebras can



30

be put into one-to-one correspondence with each other.
If they can, the algebras are considered equal up to
isomorphism. If not, they are different algebras from the
point of view of isomorphism.

From a geometric point of view, the r-h and l-h
algebras are easily distinguished, but an isomorphic
test cannot tell the difference, since one can rearrange
the entries in the r-h product table to obtain the l-h
product table by taking suitable mirror images, or
simply re-labeling the group elements appropriately.

For right-hand quaternions, ij = +k, we can see the
equivalence to the Cayley Table–(1), given above, with
the label assignments;

1 −1 i −i j −j k −k

0 1 2 3 4 5 6 7
(3.10)

For left-hand quaternions, ij = -k, we can see the
equivalence to the Cayley Table–(1), given above, with
the label assignments;

1 −1 −i i −j j −k k

0 1 2 3 4 5 6 7
(3.11)

So, simply by inverting the signs of the imaginary
elements, {+i, +j, +k} −→ {−i,−j,−k}, we can demon-
strate the equivalence of the product tables for the r-h
and l-h quaternions. This amounts to an inversion
through the origin of coordinates for the 3-space part
of the quaternion, and is one geometric transformation
operation that would turn a right-hand into a left-hand.

D4: The group of basis elements of the alternating

complex number defined in (3.2) is isomorphic to D4,
the 4th dihedral group, which is the group of symmetries
of the 2-space square. It is interesting that this 4-d
hypercomplex number is the only one that can be formed
from the decomposition of the 2 × 2 real matrix, all
other 4-d hypercomplex numbers discussed here arise
out of the decomposition of that higher order 4×4 matrix.

Now, the square with vertices 1-2-3-4 can be rotated
by 90, 180, 270, and 360 degrees, to keep the same shape
placement in 2-d space. The four vertices move around,
but the orientation of the square is unchanged. These
four rotations form a group, {R0, R90, R180, R270},
which is isomorphic to Z4, the cyclic group of order 4.
The rotation by 360◦, is the same as rotation by 0◦,
or no rotation at all, and is thus the identity element, R0.

The square can also be reflected in either of its two
diagonals, {D13, D24}, or reflected in either of the two
lines that bisect its opposite sides, {B12, B23}—the
line that bisects side 1-2 also bisects side 3-4, while the
line that bisects side 2-3 also bisects side 1-4, we only

need B12 and B23 to indicate these two reflections. So,
there are 4 more transformations that leave the square
in place. These 4 rotations and 4 reflections form the
group of eight elements called D4.

· R0 R90 R180 R270 D13 D24 B12 B23

R0 R0 R90 R180 R270 D13 D24 B12 B23

R90 R90 R180 R270 R0 B23 B12 D13 D24

R180 R180 R270 R0 R90 D24 D13 B23 B12

R270 R270 R0 R90 R180 B12 B23 D24 D13

D13 D13 B12 D24 B23 R0 R180 R90 R270

D24 D24 B23 D13 B12 R180 R0 R270 R90

B12 B12 D24 B23 D13 R270 R90 R0 R180

B23 B23 D13 B12 D24 R90 R270 R180 R0

By defining the binary · operation in this case to mean
‘followed by’, so that the product expression R90·R180

now means a rotation of 90◦ followed by a rotation of
180◦, we can show Cayley Table-(2) equivalence, with
the label assignments[16];

R0 R90 R180 R270 D13 D24 B12 B23

0 1 2 3 4 5 6 7
(3.12)

We can then show that the alternating complex

number defined in (3.2) has this same group structure,
by making the label assignments;

E J −E −J I −I K −K

0 1 2 3 4 5 6 7
(3.13)

Now, this hypercomplex number is also a sub-algebra
of our hexpe number. If we select the basis elements
{E,−IA,−IR,−KM} from the hexpe system, and
simply re-label these {E, I, J, K}, we can demonstrate
that these elements form a group isomorphic to the
alternating complex number. So, the D4 group is
also present in the generators of the hexpe algebra.

The general dihedral group, Dn, represents the group
of symmetry operations on the regular n-sided polygon
(or, regular n-gon), when n > 2, and has a group order
of 2n. There are always n rotations and n reflections in
this group. The equilateral triangle, D3, for example,
with vertex labels 1-2-3, has three rotations, {R0, R120,

R240}, and three reflections, {B23, B13, B12} through
the lines bisecting the sides at right angles, which makes
for 2 · 3 = 6 elements. The square, D4, of order 2 · 4 = 8,
the pentagon, D5, of order 2 · 5 = 10, and other regular
n-gons, although possessing different group structures,
all share one thing in common—they all represent
symmetry groups characterizing 2-space.

But, our hexpe number system is multidimensional.
We’ve got sixteen degrees of freedom. And these sub-
algebras under discussion are 4-dimensional hypercom-
plex numbers describing corresponding 4-d sub-spaces
of our overall structure. What does it mean to find a
2-space structure here among our 4-d numbers?
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We might expect that 2-space to arise out of the
intersection of spaces of some kind of higher order.
And indeed, our dihedral hypercomplex number—
{E, IA, IR, KM}—is constructed from the intersec-
tion of three 4-d spaces, one quaternion r-h space
{E, IR, JR, KR}, and two middle-hand, m-h and a-h
spaces, {E, IM , JM , KM} and {E, IA, JA, KA}.

Think of the geometry of intersecting spaces. Two
lines intersect in a point, which is 0-space. Two planes
intersect in a line, which is 1-space. Two 3-spaces
intersect in a plane, which is 2-space. Two 4-spaces
intersect in a 3-space. There is always a reduction of 1
dimension when two spaces intersect. What about when
three spaces intersect? Three lines generally don’t even
intersect. Three planes intersect at a point, which is
0-space. Three 3-spaces intersect in a line, which is
1-space. And three 4-spaces intersect in a plane, which is
2-space. And that’s our dihedral hypercomplex number.
There’s a reduction of 2 dimensions when three spaces
intersect. So, it seems as if our dihedral hypercomplex
number, although it has 4 degrees of freedom, yet
only exhibits the symmetries of a space with 2 degrees
of freedom, because it is itself constructed from the
intersection of 3 spaces with the type of symmetries
more characteristic of higher dimensional spaces.

Also, “rotations” are only possible in the anti-
commuting quaternion space, while reflections, inver-
sions, and scale changes, are all that’s available in
the commuting middle-hand spaces. We’ve got one
axis of rotation, and two axes of scale changes, in our
hypercomplex number, {E, IR, IA, KM}. Having only
one axis of rotation immediately suggests to us we’ve
got a plane structure. Rotations are governed by the
anti-commuting rule for multiplications, and so are
only available in non-abelian spaces. Q and D4 are
the only non-abelian groups among the five groups of
order eight, the remaining three groups discussed below
are abelian. Q follows the cyclic anti-commuting
relation, ij = −ji = +k, jk = −kj = +j, ki = −ik = +i,
for the r-h, or the acyclic for the l-h, while D4

follows the alternating anti-commuting relation,
ij = −ji = +k, jk = −kj = −j, ki = −ik = +i, that
mixes these two patterns of anti-commutation. Thus, Q,
has 3 axes of rotation in the same sense. While, D4 has
that tension with its right-left-right pattern—one
right cancels the left, and effectively leaves the system
with a single right-hand axes of rotation. Looked at this
way, we can see why this hypercomplex number exhibits
the symmetries more characteristic of the plane.

Z2×Z2×Z2: The triple product of the cyclic group of
order 2 is the characteristic group of the basis elements
of the middle-hand numbers. This is also the symmetry
group of the general cuboid. We recall the middle-hand
numbers—m-a-z—have quite different inverse formulas
from the quaternions. Those cuboid weight factors that

appear in the formulas are quite a striking difference
from the simple sign changes in taking the quaternion
conjugate. We can understand why the simple sign
change works for the quaternion. We’ve just discussed
the fact that an inversion in 3-space turns a right
hand into a left hand. And since multiplying by a
quaternion involves a rotation, following such a product
by another product with the conjugate reverses this
operation because it automatically involves a rotation of
the same angle now in the opposite sense. That leaves us
with a pure magnitude change with no rotation. When
we normalize to get the inverse, we also reverse the
magnitude change, leaving us with a net scale factor of 1.

But, things are not so simple with the middle-hand.
The process of constructing the inverse now involves
volumetric expressions from three different rectangular
boxes—the cube, the square cuboid, and the general
cuboid. These boxes have the symmetry groups;

cube Oh = S4 × Z2 48

sq cuboid D4h = D4 × Z2 16

cuboid D2h = D2 × Z2 = Z2 × Z2 × Z2 8

The cube has the hexoctahedral symmetry group, Oh,
with 48 elements, which is the product of the symmetric
group, S4, of permutations of 4 objects, with order
4! = 24, and the cyclic group Z2, with order 2. The
square faced cuboid has symmetry group, D4h, with a
third as many elements, and is the product of square’s
dihedral group, D4, and cyclic group, Z2. Weighing in
with the smallest number of elements is the group of
symmetries of the cuboid with only 8 members.

We recall that the middle hand number m-h generates
a nonproportional scaling transformation, which
results in shape shifting the volume space, where cubes
become cuboids, spheres become ellipsoids, and so on.
So, the inverse hexpe number here basically has to
reverse these volumetric shape changes, and hence the
relatively strange cuboid form for the weight factors—an
indication that shapes of volumes are being adjusted.
Note that these volume changes are also restricted to
cuboid type scale changes, the shape shifts are not
arbitrary—we couldn’t do Khufu’s Transform, for
example. It should come as no surprise then, that the
numbers that generate these transformations are based
on the group of symmetry elements from the cuboid.

For the middle-hand numbers, {E, IM , JM , KM}, we
can see the equivalence to the Cayley Table-(3), given
above, with the label assignments;

E −E IM −IM JM −JM KM −KM

0 1 2 3 4 5 6 7
(3.14)

By replacing the m subscript with either a or z, we show
all three middle-hand numbers have the same table.
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Now, if we start out with a simple line segment,
drawn somewhere in space, say with the vertex labels
1-2, and consider the symmetries, we see that there are
only two possibilities. Either we leave the line segment
unchanged, e : 1-2 → 1-2, or we reflect through the
line’s midpoint that bisects the segment, a. This forms
a group with two elements, {e, a}. The reflection swaps
the vertices a : 1-2 → 2-1, so that if we perform two
reflections in succession the vertices return to their
original places, and this means, a · a = e, and we can
just as well write, a · a = a2, for convenient shorthand
notation. This is a cyclic group isomorphic to Z2.

· e

e e

Z1

· e a

e e a

a a e

Z2

· e a b

e e a b

a a b e

b b e a

Z3

In fact, the first few groups of small orders, i.e. with
order 1, 2, or 3, can only be formed in one distinct way,
and they are all cyclic groups. The first group, Z1 = {e},
has only one element, e, the identity that maps every
point of a geometric object back onto itself. It represents
the symmetry group of objects that have no symmetry
at all, so that the only transformation that leaves the
shape in place is the one that doesn’t do anything.

These first three groups have orders that are all
prime numbers (with 1 being considered a prime here).
Whenever the order is prime there is one and only one
group that can be constructed with that order. So
there is only one form for the product table of prime
order groups. This follows from Cauchy’s Theorem for
groups, which states that for every prime p that divides
the order n of a finite group, there will exist group

elements of order p, and cyclic subgroups of order p.

Therefore, we first encounter multiple groups at the
order 4. Since, 4 = 2×2, there must be elements, g2 = e,
and subgroup, Z2, and there are two distinct groups
that can be formed. These 4th order groups are;

· e a b c

e e a b c

a a e c b

b b c a e

c c b e a

Z4

· e a b c

e e a b c

a a e c b

b b c e a

c c b a e

D2 = Z2 × Z2

In constructing group tables, it helps to know that in
each row and each column every element is represented
exactly once. There are never two copies of any element
in a row or column. Each row (or column) contains
a distinct permutation of the elements, different from
every other row (or column). This characteristic deter-
mines, at a glance, whether the Cayley Table for a set of
elements is actually that of a mathematical group.

To construct a group of order 4, therefore, we start with
the identity element, e, and add an order 2 element, say
a with a2 = e, which is required by Cauchy’s Theorem.
This gives us the first four table entries in the top-left
corner of the Cayley Table. Then we add the third
element, b, and determine that ab can’t be either a or e,
because that would duplicate an element in the same row,
and ab can’t be b, because that would duplicate a column
element, so this must be the fourth element c. This
permutation rule then again tells us that, ba = c, ac = b
and ca = b. That leaves us to just determine the four en-
tries in the right-bottom square of the table: bb, bc, cb, cc.

Now, there are only two ways to resolve bb. This must
be either a or e. Both lead to valid resulting tables.
Once we choose one, the rest of the table can be filled
in immediately using the permutation rule again. If we
pick, bb = a, we must then have, bc = e, cb = e, and
cc = a. This gives us a group isomorphic to Z4. But,
if we pick, bb = e, then we must have, bc = a, cb = a,
and cc = e. This gives us a group called the Kleins
Four-Group, V , which is isomorphic to the dihedral
group, D2, and again to the direct product of a pair of
cyclic groups of order 2, i.e. Z2 × Z2. This latter group
is the group of symmetries of the rectangle, which has
half as many symmetry transformations as the square.

direct products. The cartesian product of two sets,
G = {g1, g2, ..., gn} and H = {h1, h2, ..., hm}, with orders
n and m, is defined as the set of ordered pairs, G×H =
{(g1, h1), (g1, h2), ..., (gn, hm)}, which has order n×m. If
these two sets form groups under the binary operations, ◦
and ⊗, respectively, then the “direct product” of these
two groups, also written G×H , is a new group under the
composite binary operator · defined by,

G×H = {(g, h) : g ∈ G, h ∈ H}

(g1, h1) · (g2, h2) = (g1 ◦ g2, h1 ⊗ h2) (3.15)

(g1, h1), (g2, h2) ∈ G×H

Using, Z2, the cyclic group of order 2, given above for
the line segment, we can then construct, Z2 × Z2,

· (e,e) (a,e) (e,a) (a,a)

(e,e) (e,e) (a,e) (e,a) (a,a)

(a,e) (a,e) (e,e) (a,a) (e,a)

(e,a) (e,a) (a,a) (e,e) (a,e)

(a,a) (a,a) (e,a) (a,e) (e,e)

Z2 × Z2

The rectangle only has two reflections and two rota-
tions that leave the shape in place. The rotations are 0◦

and 180◦. The latter being a 2-fold operation, like re-
flections, that is to say, two consecutive transformations
return the vertices to their starting positions. So all the
rectangle’s non-trivial symmetries are 2-fold.
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Groups of order 5 and 7, being prime orders, each
only have one table construction. Notice that the group
of order 3, given above, has no identity elements on the
main diagonal other than, e2 = e. There are no elements
with order 2, since the prime number 2 doesn’t divide
the order of the group. So, after we pick the first two
elements, {e, a}, we can’t set a2 = e, the only option is
to set it to the third element, a2 = b. After this, the
permutation rule determines the remaining entries. A
similar situation holds for the order 5 and 7 groups.

· e a b c d

e e a b c d

a a b c d e

b b c d e a

c c d e a b

d d e a b c

Z5

· e a b c d f g

e e a b c d f g

a a b c d f g e

b b c d f g e a

c c d f g e a b

d d f g e a b c

f f g e a b c d

g g e a b c d f

Z7

Suppose we’d like to construct the Cayley Table for
the group of order 5. Now, 2 doesn’t divide 5, so a2 6= e,
and by closure and the permutation rule, a2 must be one
of the other elements, different from both e and a. Let,
a2 = b, then ab = a3, but a3 6= e, since 3 doesn’t divide
5, so ab must be different from e, a, and b, therefore
lets call it c. Since this is a cyclic group, and all cyclic
groups are abelian, the table must be symmetric about
the main diagonal, and so ba = ab = c. What about bb?
It can’t be e, b, or c. Now bb 6= a, because bb = a4, and
if a4 = a, which can be re-written, a · a3 = a · e, then the
cancellation laws would require, a3 = e, which we just
mentioned is impossible. So, bb must be a new element,
and therefore must be the final element d. Similarly,
ac can’t be a, b, or c, because they are already in the
same row. It must be either e or d. But, if ac = e, then
a(ab) = e, that is, (aa)b = b2 = e, which is impossible.
So, the only valid entry here is ac = d, from which the
abelian character also tells us ca = ac = d. Then we
can just complete the row, ad = e, and column, da = e.
Then, bc = b(ba) = (b2)a = a5. Since there must be
an order 5 element in this group, let this be one such
element, so bc = a5 = e, then cb = bc = e, also. Then
we complete the column and row, db = bd = a. Now,
cc = (ab)c = a(bc) = a(e) = a, and from here we can fill
in the rest, dc = cd = b, and dd = c.

The table for the cyclic group of order 7 can be
similarly determined. Of course, an even easier way
to construct this table would be to use the mod-
ulo arithmetic results from adding numeric elements
{0, 1, 2, 3, 4, 5, 6}, whereafter these can simply be re-
labelled {e, a, b, c, d, f, g}. But, by using the Group
Axioms, Cauchy’s Theorem, the permutation rule, and
other established rules and results of group theory, we
can construct any group, not just the cyclic groups.

The cancellation law we used here comes in two forms.
The left cancellation law states that whenever, a·b = a·c,
we can cancel the identical left element to obtain, b = c.
And the right cancellation law states that whenever,
b · a = c · a, we can cancel the identical right element
to obtain, b = c. These two cancellation laws may be
used as alternate axioms, together with closure and
associativity, in the definition of a group.

Group. A set G and a binary operation · is called a
group if and only if one of the two sets of axioms hold,

=either=

1. Closure: ∀ a, b ∈ G⇒ a · b ∈ G.
2. Associativity: ∀ a, b, c ∈ G, (a · b) · c = a · (b · c).
3. Identity: ∃ e ∈ G, a · e = e · a = e, ∀ a ∈ G.
4. Inverse: ∀ a ∈ G, ∃ a−1 ∈ G, a−1 · a = a · a−1 = e.

=or=

1. Closure: ∀ a, b ∈ G⇒ a · b ∈ G.
2. Associativity: ∀ a, b, c ∈ G, (a · b) · c = a · (b · c).
3. Right Cancel: b · a = c · a ⇐⇒ b = c, ∀ a, b, c ∈ G.
4. Left Cancel: a · b = a · c ⇐⇒ b = c, ∀ a, b, c ∈ G.

Given one set of axioms we can derive the other.
However, it is the cancellation laws that tell us that
the product ab can’t be either a or b, unless one or
both of these are in fact the identity element e, and
therefore we can’t have more than one copy of an
element in any row or column. For suppose there were
two different elements, b 6= c, for which the products,
ab and ac, produced the same element, d, in a given
row. Then because, ab = d = ac, this means, ab = ac,
and the cancellation law requires, b = c, which con-
tradicts our requirement that b 6= c. So, there can be
no copies of elements in any row (column), therefore
every element of the group must be present in every
row (column), and hence every row (or column) must
be a distinct permutation of all the elements of the group.

There are two groups of order 6, the cyclic group, Z6,
and the 3rd dihedral group, D3. Notice that an even
easier way to construct the cyclic group is to simply
copy the elements from one row to the row below with
a simultaneous shift of all elements to the left by one
column. The permutations are truly cyclic!

· e a b c d f

e e a b c d f

a a b c d f e

b b c d f e a

c c d f e a b

d d f e a b c

f f e a b c d

Z6

· e a b c d f

e e a b c d f

a a b e d f c

b b e a f c d

c c f d e b a

d d c f a e b

f f d c b a e

D3 = S3
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This observation allows us to immediately write down
the table for the cyclic group Z6.

Now, given that, 6 = 2× 3, there must be an order 2
element, e.g. c2 = e, and an order 3 element, e.g. b3 = e,
and the two cyclic groups, Z2 and Z3, must be subgroups.
This allows us to show that there are only two possible
groups of order 6, the cyclic group, Z6, and the group
of symmetries of the equilateral triangle, D3, with its
three rotations and three reflections, which also happens
to be the smallest non-abelian group. Proceeding in
a similar manner we can demonstrate that there are
only five groups of order eight, and that these groups
are represented by the Cayley Tables (1)-(5) given above.

symmetric group, Sn. Every row in the product
table for a group of order n is a permutation of its n
elements. A group consisting of some permutations of
the elements, and an operation doing one “followed by”
the other is called a Permutation Group, while the
group of all the permutations on n elements is called
the Symmetric Group of degree n, and is written Sn, it
has n! order. Every permutation group is a subgroup
of some symmetric group—A subset that also satisfies
the group axioms is called a subgroup—and Cayley’s
Theorem states that every symmetric group of degree
n will contain all possible groups of order n as subgroups.

D3 ≡ S3. The dihedral group of the triangle, D3,
is also isomorphic to the symmetric group, S3. We
can take the three vertices 1-2-3 of the triangle, as the
entities being permuted, and illustrate this.

The usual convention is to represent the permutation
operation by ordered tuples of the moving vertices,
so that (1, 2, 3) represents the cyclical permutation
of labels in which 1 7→ 2, 2 7→ 3, 3 7→ 1, while, (1, 2)
represents the exchange permutation, 1 7→ 2, 2 7→ 1.
Note that, since the vertex 3 doesn’t move in this latter
permutation, it is left out of the ordered tuple. Only
moving labels are shown. Since the labels are all single
digits here, we may drop the comma and abbreviate
these two permutation operations, (123) and (12),
respectively. The identity element can be written (1),
interpreted 1 7→ 1, while the other labels also stay on
their original vertices. We could also write the identity
either (2) or (3). The six permutation operators are then,

(1) : 1-2-3 7→ 1-2-3,

(123) : 1-2-3 7→ 3-1-2,

(132) : 1-2-3 7→ 2-3-1,

(12) : 1-2-3 7→ 2-1-3,

(13) : 1-2-3 7→ 3-2-1,

(23) : 1-2-3 7→ 1-3-2.

Then, (12)(123) = (13), that is, (12) followed by
(123) produces the same result as (13). The operation
(12) maps 1-2-3 to 2-1-3, and then (123) maps this by
cyclically permuting the labels to the right giving, 3-2-1.

· (1) (123) (132) (12) (23) (13)

(1) (1) (123) (132) (12) (23) (13)

(123) (123) (132) (1) (23) (13) (12)

(132) (132) (1) (123) (13) (12) (23)

(12) (12) (13) (23) (1) (132) (123)

(23) (23) (12) (13) (123) (1) (132)

(13) (13) (23) (12) (132) (123) (1)

S3

R0 R120 R240 B12 B23 B13

(1) (123) (132) (12) (23) (13)

e a b c d f

This table gives the products for the group S3, which
can be identified with the rotations and reflections
that make up the dihedral group, D3, by making the
corresponding assignments shown.

Given that there is only one way to construct the
groups of the small orders, the first few symmetric,
dihedral, and cyclic groups, are isomorphic, S1 = Z1,
S2 = D1 = Z2, D2 = Z2 × Z2, S3 = D3.

S4. Now consider the four vertices 1-2-3-4 of the
regular tetrahedron. We can permute these labels in 4!
ways, and thus describe the collection of changes with
the symmetric group S4. A tetrahedron has a total
of 4 vertices and 6 edges, among its four equilateral
triangular faces. Four of the vertices of a cube can
also be selected to form a regular tetrahedron. This
tetrahedron uses six of the cube’s face diagonals for its
edges, one diagonal from each square face. The other
four vertices and six face diagonals of the cube form
another tetrahedron, complementary to the first, such
that these two inscribed tetrahedra intersect within
the cubic volume and one is the inverse image of the
other. This means that the symmetries of the regular
tetrahedron are exactly half that of the cube, since
they are represented by that collection of the cube’s
own symmetries which map one tetrahedron into itself,
leaving out that other half that map one tetrahedron into
the other. Since the tetrahedron’s symmetry group is
S4, and a 2-fold inversion operation is Z2, the cube’s full
symmetry group is just the combination of these, S4×Z2.

The volume of the intersection of the two inscribed
tetrahedra forms a regular octahedron. Thus the octa-
hedron is transformed into itself whenever the cube is
transformed into itself, and visa versa, so both the cube
and octahedron have the same symmetry group, called
the hexoctahedral group, Oh = S4 × Z2.

These symmetry transformations are called isometries.
An isometry is a geometric transformation that pre-
serves distances between points of an object, and consists
of rotations, reflections, inversions, and translations.
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the tetrahedron, S4. The 24 isometries of the regular
tetrahedron can be broken down into 12 pure rotations,
6 pure reflections, plus 6 transformations that combine
a quarter-turn rotation with reflection (or inversion);
this latter rotation being the equivalent of a 90◦ turn
about the face-to-face axis of the cube in which the
tetrahedron is inscribed—the mirror plane bisects the
cube perpendicular to this axis. These are,

R0 : 1-2-3-4 7→ 1-2-3-4 = (1)

R1-120 : 1-2-3-4 7→ 1-4-2-3 = (234)

R1-240 : 1-2-3-4 7→ 1-3-4-2 = (243)

R2-120 : 1-2-3-4 7→ 4-2-1-3 = (134)

R2-240 : 1-2-3-4 7→ 3-2-4-1 = (143)

R3-120 : 1-2-3-4 7→ 4-1-3-2 = (124)

R3-240 : 1-2-3-4 7→ 2-4-3-1 = (142)

R4-120 : 1-2-3-4 7→ 3-1-2-4 = (123)

R4-240 : 1-2-3-4 7→ 2-3-1-4 = (132)

Ra-180 : 1-2-3-4 7→ 4-3-2-1 = (23)(14)

Rb-180 : 1-2-3-4 7→ 3-4-1-2 = (13)(24)

Rc-180 : 1-2-3-4 7→ 2-1-4-3 = (12)(34)

P34 : 1-2-3-4 7→ 2-1-3-4 = (12)

P14 : 1-2-3-4 7→ 1-3-2-4 = (23)

P24 : 1-2-3-4 7→ 3-2-1-4 = (13)

P23 : 1-2-3-4 7→ 4-2-3-1 = (14)

P13 : 1-2-3-4 7→ 1-4-3-2 = (24)

P12 : 1-2-3-4 7→ 1-2-4-3 = (34)

C1-90 : 1-2-3-4 7→ 3-4-2-1 = (2314)

C1-270 : 1-2-3-4 7→ 4-3-1-2 = (1324)

C2-90 : 1-2-3-4 7→ 4-1-2-3 = (1234)

C2-270 : 1-2-3-4 7→ 2-3-4-1 = (1432)

C3-90 : 1-2-3-4 7→ 3-1-4-2 = (1243)

C3-270 : 1-2-3-4 7→ 2-4-1-3 = (1342)

. The 24 Isometries of the Tetrahedron, S4.

First is the identity, R0, a rotation of 0◦. Con-
sider the vertex labels 1-2-3-4. The line drawn through
vertex #1, which intersects the opposite triangular face
at right angles, has two rotations, 120◦ and 240◦, which
we write R1-120 and R1-240. These are permutations,
(234) and (243). Now, if we draw the axis from the
mid-point of edge 1-2 to the mid-point of edge 3-4, a
180◦ rotation, Rc-180, will swap labels 1 and 2, and also
swap labels 3 and 4, so the permutation is (12)(34).

For the pure reflections, each mirror plane contains
one edge and bisects the opposite edge. The plane,
drawn through the vertices 3 and 4, contains the edge
3-4, and if this plane also bisects edge 1-2, it is then
a plane of mirror symmetry. We write, P34, and the
permutation operation is (12). Lastly, we consider that

the tetrahedron is inscribed in a cube. Rotate that cube,
by 90◦ or 270◦, about a face-to-face axis, then reflect in
the plane bisecting the cube perpendicular to this axis.
Let us write one such operation pair, C1-90 and C1-270,
these then have permutation (2314) and (1324).

cube, Oh = S4 × Z2. The eight vertices of the cube
form two complementary tetrahedra. When we invert the
cube, by mapping each vertex to the corresponding ver-
tex across the cubic diagonal, these tetrahedra exhange
places. This inversion operation, I, has 2-fold symmetry,
Z2, so by doubling tetrahedron’s symmetry group we ob-
tain the corresponding group of symmetries of the cube.

1

2

3

4

FIG. 3: the tetrahedron in the cube

square cuboid, D4h. When a plane figure with
n-fold rotational symmetry is embedded in 3-space, the
usual convention is to align that axis of rotation with the
vertical. The plane is then horizontal, and a reflection
in a line of the plane can now be interpreted either as a
reflection in the vertical plane containing that line, or as
a 180◦ rotation in 3-space with that line acting as the
axis of rotation. When considering points restricted to
the plane, these two operations produce the same result,
but in 3-space these are very different operations that
need to be distinguished; the first is written Cnv and
the second, Dn. [17] In 3-space, all the 2n isometries of
the dihedral group, Dn, are now rotations. To include
the additional isometries that represent reflections, a
subscript, h, v, d, is added to indicate whether the mirror
plane is “horizontal”, “vertical”, or “diagonal”, and
these symmetry groups are then written, Dnh, Dnv, Dnd.

The dihedral group with horizontal mirror plane
reflections can also be written, Dnh = Dn × Z2, and has
order 4n. This is the symmetry group of the regular
n-sided prism. When, n = 4, this is the symmetry group
for the square cuboid, D4h = D4 × Z2, which has order
16. When, n = 2, this is the symmetry group for the gen-
eral cuboid, D2h = D2×Z2 = Z2×Z2×Z2, with order 8.
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Like the line segment, Z2, and the rectangle, Z2 × Z2,
the cuboid symmetry group is also built from 2-fold
transformations, giving us the Z2 × Z2 × Z2 group.

· (e, e, e) (a, e, e) (e, a, e) (a, a, e) (e, e, a) (a, e, a) (e, a, a) (a, a, a)

(e, e, e) (e, e, e) (a, e, e) (e, a, e) (a, a, e) (e, e, a) (a, e, a) (e, a, a) (a, a, a)

(a, e, e) (a, e, e) (e, e, e) (a, a, e) (e, a, e) (a, e, a) (e, e, a) (a, a, a) (e, a, a)

(e, a, e) (e, a, e) (a, a, e) (e, e, e) (a, e, e) (e, a, a) (a, a, a) (e, e, a) (a, e, a)

(a, a, e) (a, a, e) (e, a, e) (a, e, e) (e, e, e) (a, a, a) (e, a, a) (a, e, a) (e, e, a)

(e, e, a) (e, e, a) (a, e, a) (e, a, a) (a, a, a) (e, e, e) (a, e, e) (e, a, e) (a, a, e)

(a, e, a) (a, e, a) (e, e, a) (a, a, a) (e, a, a) (a, e, e) (e, e, e) (a, a, e) (e, a, e)

(e, a, a) (e, a, a) (a, a, a) (e, e, a) (a, e, a) (e, a, e) (a, a, e) (e, e, e) (a, e, e)

(a, a, a) (a, a, a) (e, a, a) (a, e, a) (e, e, a) (a, a, e) (e, a, e) (a, e, e) (e, e, e)

Z2 × Z2 × Z2

We can see the equivalence to Cayley Table-(3), given
above, with the label assignments;

(e, e, e) (a, e, e) (e, a, e) (a, a, e) (e, e, a) (a, e, a) (e, a, a) (a, a, a)

R0 R1 R2 R3 P1 P2 P3 I

0 1 2 3 4 5 6 7

group products. The direct product concept
can be extended to more than just two groups. For n
groups, G1, G2, . . . , Gn, each with binary operations,
o1, o2, . . . , on, the direct product is defined as the set of
n-tuples, with binary operation ◦ , given by,

G1 ×G2 × . . . ×Gn = {(g1, g2, . . . , gn)}
where, g1 ∈ G1, g2 ∈ G2, . . . gn ∈ Gn.

and,

(g1, g2, . . . , gn) ◦ (h1, h2, . . . , hn)

= (g1 ◦1 h1, g2 ◦2 h2, . . . , gn ◦n hn)

The product of these n groups is also a group, it has
order, N , equal to the product of the orders of the groups
in the product. The symbol, |G|, is used to denote the
order of a group, G, so the group order can be written,

N =

∣

∣

∣

∣

∣

n
∏

k=1

Gk

∣

∣

∣

∣

∣

= |G1 ×G2 × . . . ×Gn| =
n
∏

k=1

|Gk|.

If all the factor groups have the same order, |Gk| = m,
then the order is just, N = mn. If all the factors are the
same group, Gk = G, we may write the product, Gn.

The cuboid, Z
3
2 = Z2 × Z2 × Z2, has four rotations,

R0, R1, R2, R3, that leave the shape in place. One is
the trivial identity rotation of 0◦ about any axis, and the
others are all proper rotations of 180◦ about the three or-
thogonal axes of the space. Then, there are 3 reflections
in the mirror planes, P1, P2, P3, perpendicular to these
rotation axes. The last isometry is the inversion, I, that
maps each vertex to the corresponding vertex across the
cubic diagonal. The eight vertices, 1-2-3-4-5-6-7-8, are
thus permuted into, 7-8-5-6-3-6-4-2, by the inversion op-
eration, and we can write, I ≡ (17)(28)(35)(46).

P1

P3

P2

R1

R2

R3

1

2

3

4

5

6

7

8

FIG. 4: Symmetries of the Cuboid.

R0 1-2-3-4-5-6-7-8 (1)

R1 3-4-1-2-7-8-5-6 (13)(24)(57)(68)

R2 8-7-6-5-4-3-2-1 (18)(45)(27)(36)

R3 6-5-8-7-2-1-4-3 (16)(25)(38)(47)

P1 5-6-7-8-1-2-3-4 (15)(26)(37)(48)

P2 2-1-4-3-6-5-8-7 (12)(34)(56)(78)

P3 4-3-2-1-8-7-6-5 (14)(23)(58)(67)

I 7-8-5-6-3-6-4-2 (17)(28)(35)(46)

The permutation operations for the eight isometries
are given in the above figure and table.

space symmetry. An interesting observation here is
that the generators of the middle-hand numbers have
the characteristic group, Z2 × Z2 × Z2, of the cuboid,
which is a 3-space object. Yet, the m-a-z numbers are 4-
dimensional hypercomplex numbers. They have four de-
grees of freedom, and so describe a type of 4-space. But,
it’s a 4-space exhibiting 3-space type symmetries. This
apparent reduction of one degree of freedom suggests that
these numbers are in some way constructed from the in-
tersection of higher dimensional spaces. In fact, recall
that the middle-hand numbers are constructed from two
quaternions. They are themselves generated from a pair
of r-h and l-h quaternions. The quaternions are the
genuine 4-d entities. When we combine two quaternions
we obtain the middle-hand numbers, but with a reduc-
tion of one degree of freedom reflected in the symmetry
group that characterize these new numbers. Then, when
we combine a quaternion with two of these middle hand
numbers, we again get another reduction of the degree
of freedom reflected in the symmetry group that charac-
terize the resulting number—those dihedral hypercom-
plex numbers have symmetry group, D4, which are more
characteristic of 2-space. This is the symmetry group of
the square. So, while it is also possible to describe the
hexpe algebra as being constructed from any two of the
five r-l-m-a-z numbers, it seems more natural to choose
the r-l quaternion pair to be the generators, because of
this hierarchical structure in the space symmetry.
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Z2 ×Z4: Davenport’s numbers. The commutative hy-
percomplex numbers studied by Davenport, and given
here in equations (2.33), can be seen to form the group
isomorphic to Z2 × Z4 if we make the assignments,

E I −E −I K −J −K J

0 1 2 3 4 5 6 7
(3.16)

and compare the result with the Cayley Table-(4) above.

Now, if we take the direct product of the two cyclic
groups, {e, a} and {e, b, b2, b3}, i.e. groups isomorphic to
Z2 and Z4, we obtain,

· (e, e) (e, b) (e, b2) (e, b3) (a, e) (a, b) (a, b2) (a, b3)

(e, e) (e, e) (e, b) (e, b2) (e, b3) (a, e) (a, b) (a, b2) (a, b3)

(e, b) (e, b) (e, b2) (e, b3) (e, e) (a, b) (a, b2) (a, b3) (a, e)

(e, b2) (e, b2) (e, b3) (e, e) (e, b) (a, b2) (a, b3) (a, e) (a, b)

(e, b3) (e, b3) (e, e) (e, b) (e, b2) (a, b3) (a, e) (a, b) (a, b2)

(a, e) (a, e) (a, b) (a, b2) (a, b3) (e, e) (e, b) (e, b2) (e, b3)

(a, b) (a, b) (a, b2) (a, b3) (a, e) (e, b) (e, b2) (e, b3) (e, e)

(a, b2) (a, b2) (a, b3) (a, e) (a, b) (e, b2) (e, b3) (e, e) (e, b)

(a, b3) (a, b3) (a, e) (a, b) (a, b2) (e, b3) (e, e) (e, b) (e, b2)

Z2 × Z4

We can confirm the equivalence to Cayley Table-(4),
given above, with the label assignments;

(e, e) (e, b) (e, b2) (e, b3) (a, e) (a, b) (a, b2) (a, b3)

0 1 2 3 4 5 6 7

These hypercomplex numbers are also contained in
the hexpe system. If we take the basis elements
{E, IR, IL, IM}, and re-label these {E, I, J, K}, we’ll ob-
tain Davenport’s numbers (2.33). So, the Z2 × Z4 group
is also contained in the hexpe algebra. The basis ele-
ments of general hexpe number can then be re-arranged,
so that the number (2.34) can also be written,

h = h0E (3.17)

+ hR1IR + hL1IL + hM1IM

+ hR2JR + hL2JL + hM2JM

+ hR3KR + hL3KL + hM3KM

+ hA1IA + hA2JA + hA3KA

+ hZ1IZ + hZ2JZ + hZ3KZ

Each line below the h0E term now contains a triplet
from a commutative hypercomplex number. Therefore,
a different view into the hexpe number reveals it to
consist of 3 Davenport type commutative hypercomplex
numbers, plus the 2 middle-hand commutative hyper-
complex numbers, a-h and z-h. Although written as
five commutative numbers, these separate numbers do
not actually commute with each other. Nevertheless,
equation (3.17) shows one way that Davenport’s algebra
is contained within the hexpe algebra.

Now let any of the three triplets, {IR, IL, IM},
{JR, JL, JM}, {KR, KL, KM}, be re-labeled, {I, J, K},
then we can write the Davenport style hexpe number,

h = wE + xI + yJ + zK (3.18)

= w(EE) + x(IE) + y(−IK) + z(EK)

= (wE + xI)E + (zE − yI)K

This can be re-arranged into the form,

h = [(wE + xI)− (zE − yI)](
E −K

2
) (3.19)

+ [(wE + xI) + (zE − yI)](
E + K

2
)

or, equivalently,

h = [(w − z)E + (x + y)I](
E −K

2
) (3.20)

+ [(w + z)E + (x − y)I](
E + K

2
)

We can define two special unit numbers,

e1 =
E −K

2
, e2 =

E + K

2
(3.21)

which then have the product rules,

e2
1 = e1, e2

2 = e2, e1e2 = e2e1 = 0 (3.22)

Now let, {ξ, η}, be the two complex numbers,

ξ = [(w − z)E + (x + y)I] (3.23)

η = [(w + z)E + (x− y)I] (3.24)

then we can write the (3.18) hypercomplex number,

h = ξe1 + ηe2 (3.25)

Davenport calls this the canonical form of the commu-
tative hypercomplex number.

If we wanted to find the inverse of this number, we
could start with the form in (3.18), flip a pair of signs to
get our usual, g, number,

g = wE − xI − yJ + zK (3.26)

whence, the product, gh, then yields,

gh = (w2 + x2 + y2 + z2)E + (2wz − 2xy)K (3.27)

Recognizing this has the form, (aE + bK), we define a
new factor, f , with the complementary form, (aE− bK),
i.e.,

f = (w2 + x2 + y2 + z2)E − (2wz − 2xy)K (3.28)
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then, because, (aE − bK)(aE + bK) = (a2E − b2E) =
(a2 − b2)E, we have,

fgh = (a2 − b2)E (3.29)

where,

a = (w2 + x2 + y2 + z2) (3.30)

b = (2wz − 2xy)

Thus, our inverse, h−1, is given by the product, fg, di-
vided by this normalizing factor, (a2 − b2), resulting in,

h−1 =
w0E + w1I + w2J + w3K

a2 − b2
(3.31)

where,

a2 − b2 = w4 + x4 + y4 + z4 + 2w2(x2 + y2 − z2)

− 2x2y2 + 2x2z2 + 2y2z2 + 8wxyz

(3.32)

w0 = +w3 + w(x2 + y2 + z2)− z(2wz − 2xy)

w1 = −x3 − x(w2 + y2 + z2)− y(2wz − 2xy)

w2 = −y3 − y(x2 + w2 + z2)− x(2wz − 2xy)

w3 = +z3 + z(x2 + y2 + w2)− w(2wz − 2xy)

But, we could start with Davenport’s canonical form in
(3.25), say the inverse, h−1, is given by,

h−1 = ξ′e1 + η′e2 (3.33)

then, because, e1e2 = e2e1 = 0 etc.., we have,

h−1h = (ξ′e1 + η′e2)(ξe1 + ηe2) (3.34)

= ξ′ξe1 + η′ηe2 (3.35)

then, since, e1 + e2 = E, our inverse is obtained when,
ξ′ = ξ−1 and η′ = η−1, so that,

h−1 = ξ−1e1 + η−1e2 (3.36)

Using the complex conjugates we can write this,

h−1 =
ξ∗ηη∗e1 + η∗ξξ∗e2

ξξ∗ηη∗ (3.37)

Then, substituting the definitions for these parameters,
we get our normalizing factor,

(a2 − b2) = (a− b)(a + b) (3.38)

= ξξ∗ηη∗

= [(w − z)2 + (x + y)2][(w + z)2 + (x− y)2]

and the numerator resolves to the same results given by
the wk weight factors in (3.32) above.

Z8: The cyclic group of order 8, is the group of
rotation symmetries of the regular octagon. All cyclic
groups can be represented by the rotation symmetries

of corresponding regular polygons, i.e. Zn ⊂ Dn. The
hexpe algebra directly contains four of the five groups
of order 8, only this group, Z8, is not represented
directly among the basis elements. This is because
our hypercomplex system is built from elements that
are representations of the square-roots of +1 or −1.
So, every basis element has order 1, 2, or 4 (with
E1 = E, IM

2 = E, ..., IR
4 = E, ... etc.. ). Therefore, by

design, we don’t have an element with order 8. However,
we may use linear combinations of basis elements to
construct the group elements for Z8.

We only need to find a suitable 8-th order element. One
such example gives the set of positives and negatives of
the four matrices

{ E, IR,
(E + IR)√

2
,

(E − IR)√
2

}

A cyclic generator for this group is, a = (E + IR) /
√

2,
and the group elements are then the usual
{E, a, a2, a3, a4, a5, a6, a7}. We can demonstrate
the equivalence to Cayley Table-(5), given above, with
the label assignments,

E
(

E+IR√
2

)

IR

(

−E+IR√
2

)

−E
(

−E−IR√
2

)

−IR

(

E−IR√
2

)

e a a2 a3 a4 a5 a6 a7

0 1 2 3 4 5 6 7

the hexpe group. Apart from these groups of order
eight, the entire collection of ± hexpe basis elements
form a non-abelian group of order 32.

Group Statistics. Given that the hexpe system con-
tains 15 imaginary basis elements, which form various
triplets on which different types of 4-d hypercomplex
numbers can be built, the question naturally arises, how
many different ways can each type of number be con-
structed by selecting an appropriate triplet? We already
know that these numbers can only be from one of the
four groups: Q, D4, Z2 × Z2 × Z2, and Z2 × Z4. But,
exactly how many times are these groups represented
among the 15 elements? Now there are 15·14·13

3·2·1 = 455

ways to pick 3 from 15. But, how many of these form
a closed {I, J, K} triple, i.e. where IJ = ±K? From
the hexpe product table (table t.2 ) we can see that
there are (15 · 15 − 15)/2 = 105 distinct pairs that pro-
duce the required third element for such a closed triple.
The defining product rules for each triple use up three of
these pairs, e.g. IJ = ±K, JK = ±I, KI = ±J . These
105/3 = 35 unique triples are broken down into: 2 of Q,
the r and l quaternions; 9 Davenport triples Z2 × Z4,
which require two 4th order elements each, so need to
be constructed from one r and one l element, which can
only be done in 3 × 3 ways; 1

3
(9·6

1
· 2

3
+ 9·9−9

2
· 1

2
) = 18

D4 triples, which all have exactly one 4th order element
taken from either r or l; and the remaining 9·9−9

2·2·3 = 6
triples are Z2 × Z2 × Z2, which are the various ways of
selecting the right combinations of the 9 m-a-z elements.
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4. APPLICATIONS.

The Sixteen Degrees of Freedom. One good
thing about Hamilton’s quaternions is that they have
just the four degrees of freedom required to represent
points in spacetime. But, what are we to make of the 16
degrees of freedom in the hexpe numbers? Well, these
are degrees of transformation, not points in spacetime.
To express the transformation of a 4-d spacetime event
into another 4-d spacetime event, we need 16 degrees
of freedom. That’s the job of the 4 × 4 matrix. It tells
us how these things change. It is the algebra of the
transformation operations therefore that is described by
the new algebra of the hexpentaquaternions.

The agents of transformation require 16 parame-
ters to fully express all possible changes between two
4-d variables. Each of the four dependent variables,
vk; k = 0, 1, 2, 3, have those four initial independent vari-
ables for influence, vk(u0, u1, u2, u3); k = 0, 1, 2, 3, lead-
ing to 16 parameters of change, ∂vk/∂uj; j, k = 0, 1, 2, 3.
We could just use the familiar 4 × 4 matrix algebra
to describe the changes. But, what the hexpe system

does is break down the transformation into special
types of operations revealing the sub-structure of the
components-of-change based on symmetry operations.
Each of the five groups of order eight represents a unique
symmetry type that is encapsulated in the sub-algebra
built around that group.

We’ve seen how the middle-hand numbers de-
scribe shape shifting, just like how right-hand and
left-hand quaternions describe rotations. So, when
we decompose a 4 × 4 transformation matrix into an
hexpe number, we get a sense of how much shape shift-
ing verses how much rotation is involved in the operation.

Now, 4 × 4 matrix transformation operations are
applicable in many areas of geometry and physics. The
hexpe number is therefore versatile. Although we con-
structed the hexpe number using Hamilton’s quaternions
for a starting point, it really doesn’t matter what the
four-parameter variable undergoing transformation is. It
doesn’t have to be a quaternion at all. This is because
the set of 16 basis elements that comprise the hexpe
number form a complete set of linearly independent
matrices of the same 4 × 4 order as the general trans-
formation matrix being decomposed, and so any type
of four-parameter variable, from any theory that uses
such things, can benefit from the insights achieved by
re-representation using this new hypercomplex algebra.

Affine Transformations. One of the more general
types of useful transformations often employed in the
study of 3-space comes from Affine Geometry.

F : x −→ y = Ax + c (4.1)

An affine transformation, F , is a general linear

transformation, y = Ax, plus a translation, y = x + c.

This transformation preserves parallelism, which is to
say, parallel lines are transformed into parallel lines, al-
though lengths and angles within shapes may change.
The cuboid scale changes generated by the middle-hand
hexpe numbers are an example of such transformations.
In the 3-space, the affine transformation can be repre-
sented by 3 × 3 matrix multiplication, followed by the
addition of a 3× 1 column vector.
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This type of “inhomogeneous” equation, however, is
often converted into a more convenient “homogenous”
equation, by using a simple operational trick. By adding
a fourth coordinate parameter, and re-writing the equa-
tion using 4-dimensional matrices, we can homogenize
the equation, so that all affine transformations can be
represented just by matrix multiplication alone.

homogeneous coordinates.
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(4.3)

This is accomplished by adding a 1 to the column
vectors, and then including the inhomogeneous term as
the extra column of the expanded square matrix, filling
in the rest of the extra matrix entries with 0s. The
fourth coordinate parameter is therefore a fixed number,
the value 1 being the most appropriate choice, although
other fixed values may be chosen depending on the man-
ner in which overall scaling operations are being included.

The 4th parameter may appear anywhere in the col-
umn, but the convention is to place this extra 1 ei-
ther at the bottom or top of the column vector, and
to modify the square matrix in corresponding fashion.
The expanded coordinates are then referred to as the
“homogeneous coordinates.” In this way, the “inho-
mogeneous” equation in 3-dimensions, is converted into
an “homogenous” equation in 4-dimensions. The geom-
etry of 3-space being then described by special transfor-
mations in 4-space. This is somewhat reminiscent of the
situation in Hamilton’s quaternions, where the extra 4th
parameter—the scalar—is included, more to facilitate al-
gebraic calculations, rather than express the interaction
of some real 4-dimensional coordinate of the space. Nev-
ertheless, both Hamilton’s 4th parameter, and the Affine
Geometry’s homogeneous 4th coordinate, are found to
have appropriate meaningful interpretations in certain
applications, where they are not just treated as mere op-
erational techniques.
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Hamilton’s scalar takes on interpretive meaning when
quaternions are applied to describe spacetime, and
Affine Geometry’s homogenous 4th coordinate takes on
interpretive meaning in the field of Projective Geometry.

The key point of interest for the moment, however,
is that affine geometry makes convenient use of 4 × 4
matrices to describe operations in 3-space geometry. The
hexpe algebra presents an alternative way to view that
4× 4 matrix algebra. So, we can use our new hypercom-
plex numbers to describe affine operations in the geome-
try of 3-space. Starting with the transformation matrix
in (4.3), adapting the equations from (2.37), gives us,

h0 = (+1 + a11 + a22 + a33)/4

hM1 = (−1− a11 + a22 + a33)/4

hM2 = (−1 + a11 − a22 + a33)/4

hM3 = (−1 + a11 + a22 − a33)/4

hA1 = (+c1 + 0− a32 − a23)/4

hA2 = (+c2 − a31 + 0− a13)/4

hA3 = (+c3 − a21 − a12 + 0)/4

(4.4)

hZ1 = (−c1 − 0− a32 − a23)/4

hZ2 = (−c2 − a31 − 0− a13)/4

hZ3 = (−c3 − a21 − a12 − 0)/4

hR1 = (+c1 − 0 + a32 − a23)/4

hR2 = (+c2 − a31 − 0 + a13)/4

hR3 = (+c3 + a21 − a12 − 0)/4

hL1 = (+c1 − 0− a32 + a23)/4

hL2 = (+c2 + a31 − 0− a13)/4

hL3 = (+c3 − a21 + a12 − 0)/4

Here we have aligned Hamilton’s scalar 4th parameter
with Affine Geometry’s homogeneous 4th coordinate, in
order to represent the affine transformation matrix in
terms of the hexpe numbers. This is the reason we place
the homogeneous fourth coordinate “1” at the top of the
column vector, instead of the more usual convention that
often puts the extra 1 in at the bottom. In this way,
we get a more natural alignment of Hamilton’s 3-space
{i, j, k}, with the corresponding affine space coordinates
(x, y, z). Although we could have other arrangements
where the quaternion scalar aligns with an affine 3-space
coordinate, instead, the most meaningful representation
occurs when we align the scalar with the extra affine
coordinate. In this way, rotation in Hamilton’s 3-space
is the same kind of operation as, and corresponds with,
rotation in Affine Geometry’s 3-space.

scalings. The first notable observation is that the
m-h subalgebra {E, IM , JM , KM}, now describes the
shape-shifting of the 3-volume instead of 4-volume.

h = h0E + hM1IM + hM2JM + hM3KM (4.5)
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(4.6)

w′x′y′z′ = a11a22a33 · wxyz (4.7)

x′y′z′ = a11a22a33 · xyz (4.8)

Here the fourth coordinate is fixed, w′ = w = 1, since,
a00 = 1, so the nonporportional scale changes apply only
to the 3-volume, V = xyz. When the norm of the m-h
number is 1, i.e. N4

M = a11a22a33 = 1, the volume is
invariant under the scale change transformation. Thus
we have the same kind of volume invariance found in
shape shifting the Great Pyramid. If we relaxed the
requirement that the transformation be linear, and
allowed the hexpe coefficients to be variable parame-
ters that depend on the transforming coordinates, we
could then write Khufu’s Transform (2.109-111) in terms
of these 4×4 matrices and corresponding hexpe variables,
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(4.9)

h =
az + b + 1

2
E +

az + b− 1

2
KM (4.10)

= (az + b)
E + KM

2
+

E −KM

2
(4.11)

khufu’s transform.

h =
L

H
·
(

17

15
− 2 · 16

15
· z

H

)

E + KM

2
+

E −KM

2
(4.12)

Unfortunately, this would then not be an affine trans-
formation, for neither is the transformation “linear”,
nor is parallism preserved. We shall, however, return to
this problem again in Projective Geometry. Now, it is a
general theorem in affine geometry that,

“Every affine transformation is equivalent to the
composition of an isometry and a nonproportional scale

change, or a shear with with a similarity.”
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A proproportional scaling transformation is called
a homothety. The combination of homothety and
isometry is called a similarity, and the isometries are
rotations, inversions, reflections, translations, and their
compositions. The nonproportional scale change

referred to is pure scaling, while that described by our
hexpe numbers can include reflections and inversions.

translations. The second notable observation is
that a pure 3-space translation, y = x + c, involves all
the other four 4-d hexpe numbers, excluding the m-h,

h = E (4.13)

+ c1( IR + IL + IA − IZ )/4

+ c2( JR + JL + JA − JZ )/4

+ c3( KR + KL + KA − KZ )/4

The translation parameters line up with the IJK axes,
so c1 becomes the coefficient of I, c2 the coef. of J , and
c3 the coef. of K, in perfect harmony—a byproduct of
our suitable labeling convention.

We could define another convenient IJK triplet to ab-
breviate this, say we use the subscript t for translations,
then write IT = (IR + IL + IA − IZ)/4, etc..the transla-
tion would be more easily described by the number,

h = E + c1IT + c2JT + c3KT (4.14)

However, the positive and negative units of the set of
elements, {E, IT , JT , KT }, do not form a group. So,
this is not one of the five groups of order 8. And, in fact,
this number (4.14) only has three degrees of freedom,
not four. The coefficient of the unit, E, is fixed at the
value 1. This allows all numbers of the form, h, to have
multiplicative inverses, even though the unit elements,
IT , JT , KT , themselves have no inverse. Let, g, be the
number obtained from flipping signs on the imaginaries,

g = E − c1IT − c2JT − c3KT (4.15)

then it is easy to see that, g, is the inverse of h, i.e.
gh = E, which should be obvious also, since transla-
tion is now being represented by “products” of hexpe

numbers. We have a special translation subalgebra..

E2 = E,

EIT = IT E = IT ,

EJT = JT E = JT ,

EKT = KT E = KT ,

IT
2 = JT

2 = KT
2 = 0

IT JT = JT IT = 0

JT KT = KT JT = 0

KT IT = IT KT = 0

which results in the following relation,

h(c′)h(c) = (E + c′1IT + c′2JT + c′3KT ) (4.16)

× (E + c1IT + c2JT + c3KT )

= (E + (c′1 + c1)IT + (c′2 + c2)JT + (c′3 + c3)KT )

= h(c′ + c)

And so we have, h(−c)h(c) = E, as expected.

rotations. In Hamilton’s algebra, a rotation is rep-
resented by the form, qAq−1, where, q, is the quaternion
describing the rotation, and, A, is the quaternion be-
ing rotated. The rotation described is a turn about in
3-space, since, if A = A0 + A, we have,

qAq−1 = qA0q
−1 + qAq−1

= qq−1A0 + qAq−1 (4.17)

= A0 + qAq−1

where, A, is the pure quaternion, A1i+A2j+A3k. Using
our pivot variable technique we can now permute the
quaternions, and so, we can also write,

qAq−1 = qRAq−1

R = qRq−1

L Â = q−1

L qRÂ. (4.18)

This means that the rotation of a vector, v = A, can
be written, alternatively, qvq−1 = (qR/qL)v̂. Which is
to say, the ratio of “right to left” of a quaternion, is
the operator that acts from the left to generate rotation.

The form, qAq−1, closely mimics corresponding
physical phenomena. A pair, +F and −F , of inverse
forces, acting from opposite sides of an object, produce
the torque, on that object in the center, generating
the physical rotation. Here, in quaternion algebra,
two inverse operators, q and q−1, acting from opposite
sides of the variable, A, produce the transformation,
on that variable in the center, which generates the
rotation. The correspondence is striking, and suggests
that quaternions are uniquely able to capture, in
symbolic expressions, just what nature does in the real
physical world. However, when it comes to manipulating
algebraic expressions, it is often simpler to represent
rotary operations by parameters on one side of the
transforming variables.

In affine geometry, a rotation in 3-space is described
by the 4× 4 matrix, R, acting on the homogeneous coor-
dinates, x = (w, x, y, z), where, x′ = Rx, and,
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(4.19)

with the components, rij , being constrained to pertain
to rotation. This matrix has 0s in the top row and left
column, so a single quaternion parameter can’t represent
affine rotation. Consider the r-h hexpe quaternion,

h = q0E + q1IR + q2JR + q3KR

(4.20)
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Because of the non-zeros in the top row and left column,
the single quaternion operator, used for affine transfor-
mation, will include translation and scaling. In fact, if
we decomposed the affine rotation matrix, R, into our
hypercomplex number, this would give us,

4 ·R = (1 + r11 + r22 + r33)E

− (1 + r11 − r22 − r33)IM

− (1 − r11 + r22 − r33)JM

− (1 − r11 − r22 + r33)KM

− (r32 + r23)(IA + IZ)

− (r31 + r13)(JA + JZ) (4.21)

− (r21 + r12)(KA + KZ)

+ (r32 − r23)(IR − IL)

+ (r13 − r31)(JR − JL)

+ (r21 − r12)(KR −KL)

and we see that this involves all the hexpe basis elements,
not just the quaternion units. But, now, remember that
a rotation in Hamilton’s algebra is generated from the
quaternion and its inverse acting simultaneously from
both sides of the variable, which we can represent by
(qR/qL) acting from one side like the affine transforma-
tion. Consider then, the quaternion, q, that generates
this same rotation in Hamilton’s algebra. We have,

q = q0 + q1i + q2j + q3k

|q|2 = q2
0 + q2

1 + q2
2 + q2

3

qR = q0E + q1IR + q2JR + q3KR

qL = q0E + q1IL + q2JL + q3KL (4.22)

q−1

L =
q∗L
|q|2 =

q0E − q1IL − q2JL − q3KL

|q|2

(qR/qL) = qRq−1

L =
qRq∗L
|q|2

then the product of right with left conjugate is,

qRq∗L = q2
0E − q2

1IM − q2
2JM − q2

3KM (4.23)

− q2q3(IA + IZ)− q3q1(JA + JZ)− q1q2(KA + KZ)

+ q0q1(IR − IL) + q0q2(JR − JL) + q0q3(KR −KL)

and equating, R = (qR/qL), we have,

r11 = (q2
0 + q2

1 − q2
2 − q2

3)/|q|2

r21 = 2.(q1q2 + q0q3)/|q|2

r31 = 2.(q3q1 − q0q2)/|q|2

r12 = 2.(q1q2 − q0q3)/|q|2

r22 = (q2
0 − q2

1 + q2
2 − q2

3)/|q|2

r32 = 2.(q2q3 + q0q1)/|q|2

r13 = 2.(q3q1 + q0q2)/|q|2

r23 = 2.(q2q3 − q0q1)/|q|2

r33 = (q2
0 − q2

1 − q2
2 + q2

3)/|q|2

So, quaternions still represent rotations in the applica-
tion of hexpe numbers to affine transformations, but
now it is the ratio of right to left of a quaternion that
becomes the corresponding affine rotation matrix.

non-proportional scaling. Because multiplica-
tion by a quaternion induces a rotation, the quaternion
basis elements are not well suited to represent a
non-proportional scaling. An attempt to represent a
non-proportional scale operation using a quaternion with
different scale factor coefficients, sk, on the axes units,
q = s0 + s1i + s2j + s3k, would result in an unwanted
rotation, and also produce a proportional scaling instead
of a non-proportional scaling. Only the middle-hand
hexpe numbers can represent the non-proportional scale
operation. Even in Heavside-Gibbs vectors, the vector

units, {î, ĵ, k̂}, are unable to properly represent non-
proportional scaling. One couldn’t use the dot product,
S ·A, to scale the vector A, by the scaling operator, S,
because such an operation produces a single scalar result,
not a vector, and we can’t compose more than one scal-
ings, one after the other, like, S1 ·S2 · . . . Sn ·A, because
such a form has no meaning in vector algebra. With
the cross product, we can write, S1 × S2 × . . . Sn ×A,
but, like in quaternions, these operations produce
unwanted rotations along with the scale changes, and
the scalings are again proportional. And even if we’re

creative, and write, A(S) = s1A1î + s2A2ĵ + s3A3k̂,
writing the operation component-wize, we’d still have
to resort to matrix algebra to compose these scalings.
Specialized scaling operations are given many names,
squeezing, stretching, shrinking, expansion, contraction,
compression, dilation, squashing, zooming, etc.; these
are just variations of the one transformation described
by the m-h hexpe numbers. There’s nothing in vector
algebra that will allow us to manipulate expressions
involving non-proportional scalings.

shearing. Apart from isometries, which define the
scope of transformations in Euclidean Geometry, there
are basically two fundamentally important operations
in Affine Geometry—the non-proportional scaling

and the shear transformation. These two, together with
the isometries, define everything that can be done in the
affine space. A shear preserving x-lines has the form,
(x, y, z) 7→ (x + αy, y, z), where α is the shearing factor.
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(4.24)

This example of the shear shifts line segments that are
parallel to the x-axis into new positions, preserving
the lengths of those segments, while keeping the two
perpendicular distances, y and z, from the x-axis, fixed.
The shear and the squeeze alter shapes and don’t
preserve distances between all points. In 2-space, the
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squeeze transforms the square into the rectangle, while
the shear changes the square into the parallelogram
that shares one side with the original square. Both,
however, preserve the area of the plane figure in the
process. In 3-space, the cube is changed into the cuboid
by the squeeze, and into a parallelopied by the shear,
both preserving the volume of the shape. But, as we
have discussed before, the m-h number generates the
cuboid scale change, transforming aligned cubes into
cuboids, and non-aligned cubes into parallelopipeds. It
all depends on how the cube is aligned relative to the
coordinate axes undergoing the non-proportional scaling.

σ = R(φ) · S(λ) · R(θ) = (4.25)0BBB�1 0 0 0

0 cos(φ) −sin(φ) 0

0 sin(φ) cos(φ) 0

0 0 0 1

1CCCA0BBB�1 0 0 0

0 λ1 0 0

0 0 λ2 0

0 0 0 1

1CCCA0BBB�1 0 0 0

0 cos(θ) −sin(θ) 0

0 sin(θ) cos(θ) 0

0 0 0 1

1CCCA
λ1 − λ2 = α λ1 + λ2 = 1/α − α,

tan(θ) = 1/α, φ − θ = (1/2 + k)π, k ∈ Z

In fact, any shear can be constructed from the
composition of isometries and scalings. The particular
shear, σ, given in (4.24), can be produced by a rotation,
R(θ), followed by a scaling, S(λ), followed by another
rotation, R(φ), with the scaling parameters, λ1 and λ2,
and rotation angles, θ and φ, all being determined by
the shear factor, α, as shown in (4.25). Similarly, we can
represent any nonproportional scaling by a composition
of isometries, shears, and proportional scalings.

Now, we can write our shear example in the usual ho-
mogenous coordinates (4.24), or in hexpe numbers,

σ = M + αKσ

where, (4.26)

M = E + (IM + JM + KM )/2

Kσ = (−KR + KL −KA −KZ)/4

Note that the shear factor, α, aligns with K-basis ele-
ments, even though the actual point shift is, x′ = x+αy,
with no change in the z-coordinate. In fact, for the
principal shears constructed from any pair of the
xyz-coordinates, the shear factor always aligns with the
third axis in the corresponding IJK triplet. For example,

x′ = x + αy, σ = M + αKσ

y′ = y + αz, σ = M + αIσ

z′ = z + αx, σ = M + αJσ

x′ = x + βz, σ = M + βJ′
σ

y′ = y + βx, σ = M + βK′
σ

z′ = z + βy, σ = M + βI′
σ

where IσJσKσ refer to the combinations with the form
-r+l-a-z, and I′

σJ ′
σK ′

σ have the form +r-l-a-z instead.

stress & strain. The alignment of the shear factor
with the third axes in (4.26), indicates a twisting action,
similar to the IJ = K for rotation, and corresponds
nicely with the physical stress and strain process that
cause shears. The stress is the normal force per unit
area that acts on a material body, while the strain is
the deformation, measured by the fractional extension,
that results. The ratio of stress to strain is the modulus
of elasticity of the material. A high modulus material
requires more effort to change its shape than a similar
object with low modulus. But, there are different types
of stress that can be applied to a material, causing it,
for example, to stretch or shrink, compress or extend,
or twist. Any given material generally has a different
modulus for each type of deformation. The torsional
stress produces a twist action that results in a shear,
which is also called a skew transformation. When the
torsional force has direction vector, K, the deformation
that occurs is in the plane at right angles to this
vector, hence involves the xy-coordinates, so like in the
translations, the IJK labels are in harmony here again.

pair products. Any hexpe number, h, can be con-
structed from the sum of rl pair products, that is,

h = A1B
′
1 + A2B

′
2 + . . . + AnB′

n (4.27)

where the Ak are r-h quaternions, and B′
k are l-h

quaternions; a useful form when manipulating linear
equations. This is a direct consequence of the fact that
the r-l basis elements generate all other elements.

IR, JR, KR, IL, JL, KL

IR = +IR

JR = +JR

KR = +KR

IL = +IL

JL = +JL

KL = +KL

IM = +IRIL = +ILIR

JM = +JRJL = +JLJR

KM = +KRKL = +KLKR

IA = +JRKL = +KLJR

JA = +KRIL = +ILKR

KA = +IRJL = +JLIR

IZ = +KRJL = +JLKR

JZ = +IRKL = +KLIR

KZ = +JRIL = +ILJR

IR, JR, KR, IM , JM , KM

IR = +IR

JR = +JR

KR = +KR

IL = −IRIM = −IMIR

JL = −JRJM = −JMJR

KL = −KRKM = −KMKR

IM = +IM

JM = +JM

KM = +KM

IA = −IRKM = +KMIR

JA = −JRIM = +IMJR

KA = −KRJM = +JMKR

IZ = +IRJM = −JMIR

JZ = +JRKM = −KMJR

KZ = +KRIM = −IMKR

But, we could, alternatively, represent the 15 imagi-
nary elements in terms of any two of the five r-l-m-a-z
number types. For example, we could choose the
r-h quaternions, and m-h scalings, and write all the
elements in terms of rm pair products. The arbitrary
hexpe number, h, in (4.27), could then be written with
Ak factors being r-h quaternions, and B′

k now being
m-h nonproportional scalings instead.
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Projective Transformations. Once we relax the
requirement that parallel lines transform into parallel
lines, we move up to the field of Projective Geometry.

A projective transformation in 3-space is defined
by three quadrilinear equations that describe how the
point (x, y, z) transforms into the point (x′, y′, z′);

x′ =
a10 + a11x + a12y + a13z

a00 + a01x + a02y + a03z

y′ =
a20 + a21x + a22y + a23z

a00 + a01x + a02y + a03z
(4.28)

z′ =
a30 + a31x + a32y + a33z

a00 + a01x + a02y + a03z

The three coordinates, (x′, y′, z′), are all determined
by linear combinations of the initial coordinates divided
by the same “scale factor”, λ = a00 + a01x+ a02y + a03z.
This scale factor is itself a linear combination of the ini-
tial coordinates, so what we have is a ratio of two multi-
variable linear polynomials. Composition of transforma-
tions can be represented by 4 × 4 matrix multiplication,
since the sets of 16 aij coefficients from two successive
transformations combine in a similar manner to matrix
components. We can therefore treat the scale factor, λ,
as a separate additional coordinate, redefine the coordi-
nates, x′′ = λx′, y′′ = λy′, z′′ = λz′, add a 4th coordi-
nate, w′′ = λ, and re-write the projective transformation
using 4× 4 matrices,
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(4.29)

This allows us to put the rather more complicated non-
linear equation (4.28) of 3-dimensions into a much sim-
pler linear “homogeneous” equation in 4-dimensions.
Like the modification introduced in Affine Geometry, we
are again able to “homogenize” the transform equations
by using a simple operational trick. This time, however,
the 4th coordinate has a definite interpretive meaning. It
is the scale factor for the 3-space variables. The actual
coordinates of the transform point being,

(x′, y′, z′) = (
x′′

w′′ ,
y′′

w′′ ,
z′′

w′′ ) (4.30)

or, in terms of the point in 4-space we can write,

(1, x′, y′, z′) = (
w′′

w′′ ,
x′′

w′′ ,
y′′

w′′ ,
z′′

w′′ ) (4.31)

Initially, the 3-space point, (x, y, z), is converted into ho-
mogenous coordinates, (w, x, y, z) = (1, x, y, z), with the
scale factor coordinate taking the value 1. After trans-
formation, the resulting 4-space point, (w′′, x′′, y′′, z′′),
is put in the same scale as the initial coordinates by
re-scaling, (1, x′, y′, z′), so that the 4th coordinate is
again the unit 1. In Projective Geometry, all the 4-space
points of the form, (λ, λx, λy, λz) ≡ λ(1, x, y, z), where λ
is any non-zero real valued number, i.e. λ ∈ R−{0}, are
considered to refer to the same 3-space point, (x, y, z).
So, although the transformations are described by
4 × 4 matrices, a matrix that induces a proportional
scaling in 4-space has no significant meaning for the
3-space projective transform. Non-proportional scaling
in 4-space, however, such as described by the m-h hexpe

numbers, continue to reflect shape shifts for the 3-space.

Affine Geometry. In the particular special case
where the scale factor is always 1, i.e. the three coef-
ficients vanish, a01 = a02 = a03 = 0, while the fourth
is the unit, a00 = 1, the Projective Transformation
becomes an Affine Transformation. Affine Geometry is
therefore contained within Projective Geometry, and
the latter can be considered an extension of the former,
where the homogeneous 4th coordinate now takes on
this interpretive meaning of a transforming scale factor.

In applying our new hexpe algebra to describe
operations in Projective Geometry, therefore, to be
consistent with our corresponding approach in Affine
Geometry, we once again align Hamilton’s quaternion
4th parameter—the scalar—with Projective Geometry’s
4th homogeneous coordinate—the scale factor. In this
way, the 4×4 square matrix, [aij ], in equation (4.29) can
be identified with that in (2.35) for the hexpe number.

Projectivities. A projective transformation is also
called a “projectivity.” When one of the coordinate
variables is removed, say x′ ≡ x ≡ 0, the transform
equations (4.28) reduce to a pair of trilinear equations
that describe the projectivity of 2-space. The yz-plane is
projected onto the y′z′-plane. And when two of the co-
ordinate variables are removed, say x′ ≡ x ≡ y′ ≡ y ≡ 0,
these equations reduce to a single bilinear equation that
describes the projectivity of 1-space—the z-axis line is
projected onto itself, or onto the z′-axis.

For example, the projective transformation of this line
onto itself can be written,

z′ =
αz + β

γz + δ
(4.32)

where, z, is the coordinate of a point on the line, which is
transformed into the point, z′, by the 1-space projectiv-
ity, and the parameters, α, β, γ, δ, are the four coefficients
that define the particular projection. This equation can
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be re-written in homogenous coordinates,

(

w′′

z′′

)

=

(

δ γ

β α

)(

w

z

)

(4.33)

(w, z) = (1, z), (1, z′) = (
w′′

w′′ ,
z′′

w′′ ) (4.34)

khufu’s transform. Finally, we can deal with trans-
formations of the type described by Khufu’s Transform.
Now consider the previous equations,

x′ = (az + b)x (2.102)

y′ = (az + b)y (2.103)

z′ = z (2.104)

Given that the z-coordinate is unchanged, we may re-
place the factor (az + b) with (az′ + b), and re-write this
transformation,

x′ = (az′ + b)x (4.35)

y′ = (az′ + b)y (4.36)

z′ = z (4.37)

then, moving this factor to the other side of the equations
we write,

x′/(az′ + b) = x (4.38)

y′/(az′ + b) = y (4.39)

z′ = z (4.40)

This doesn’t have quite the form we need to describe the
transformation by a single projectivity, since one of the
coordinate variables, the z-axis, isn’t being scaled in the
same manner as the other two, x, y. However, we may
introduce a new set of intermediate coordinate variables,
(x′′, y′′, z′′), and re-write these relationships,

x′/(az′ + b) = x′′ = x (4.41)

y′/(az′ + b) = y′′ = y (4.42)

z′/(az′ + b) = z′′ = z/(az + b) (4.43)

This allows us to represent Khufu’s Transform by a pair
of dissimilar projectivities. On the left we have a 3-space
projectivity, (x′, y′, z′) 7→ (x′′, y′′, z′′), and on the right
we have a 1-space projectivity, z 7→ z′′. Let us first re-
verse the 3-space projectivity, and write,

x′ = x′′/(−(a/b)z′′ + 1/b) (4.44)

y′ = y′′/(−(a/b)z′′ + 1/b) (4.45)

z′ = z′′/(−(a/b)z′′ + 1/b) (4.46)

This 3-space projectivity can be represented in the usual
4-dimensional homogenous coordinates,
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(4.47)

(1, x′, y′, z′) = (
w′′′

w′′′ ,
x′′′

w′′′ ,
y′′′

w′′′ ,
z′′′

w′′′ ) (4.48)

Now, the 1-space projectivity can be represented in its
usual 2-dimensional homogeneous coordinate form,

(

w′′′′

z′′′′

)

=

(

b a

0 1

)(

w

z

)

(4.49)

(1, z′′) = (
w′′′′

w′′′′ ,
z′′′′

w′′′′ ) (4.50)

But, a 1-space projectivity for a line embedded in 3-space
can also be written with 4× 4 matrices.
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(4.51)

(1, x′′, y′′, z′′) = (
w′′′′

w′′′′ , x
′′′′, y′′′′,

z′′′′

w′′′′ ) (4.52)

However, the resulting 4-parameter variables are no
longer “homogeneous” coordinates; and because the 4-
parameter coordinates are of different types, we cannot
combine the 1-space transformation with the 3-space one
to form a single linear homogeneous 4-dimensional trans-
formation. Normally, two projectivity transformations
that follow each other can simply be represented by the
product of the transformation matrices. But, this is only
true when the projectivities are of the same type, i.e. 3-
space projectivity followed by another 3-space projectiv-
ity, or a 1-space projectivity followed by another 1-space
projectivity. We can just multiply the matrices and, after
taking all the products of the successive transformations,
we can then re-scale the column vector of the final re-
sult. In Khufu’s case, however, in order to combine the
two projectivities using matrix multiplication, we must
re-scale the column vector between transformations. Let
us define the “1-space” and “3-space” scaling operators,
S1(X) and S3(X), where X is the column vector of the
(w, x, y, z)-coordinates, by the following expressions,

S1
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(4.53)
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Now let, h, be the hexpe number that corresponds to the
4 × 4 transformation matrix in (4.47), then recognizing
that the 4× 4 matrix in (4.51) is just the inverse of this,
we can write Khufu’s Transform,

X ′ = S3(hS1(h
−1X)) (4.54)

The sequence, S3hS1h
−1, reading from right to left,

represents: first the 1-space projectivity that scales
the z-coordinate in the opposite sense to that later
3-space projectivity, so that the z-coordinate can come
out of this whole operation “unchanged” in the end;
this is followed immediately by a re-scaling so that the
4-parameter coordinates become true “homogeneous”
coordinates for the next stage of the transformation;
then the 3-space projectivity is applied, which scales
the xy coordinates and simultaneously reverses the
previous change in z; finally we re-scale the homogenous
coordinates to bring all coordinate variables into the
same reference scale we began with.

Khufu’s Transform then, can be represented by a
sequence of operations in Projective Geometry—this
pair of linear homogeneous transformations intercepted
by non-linear re-scaling—a 1-space projectivity followed
by a 3-space projectivity transforms the cube into the
truncated pyramid, (x, y, z) 7→ (x′, y′, z′).

Although there are two linear transformations, only
one 4×4 matrix is needed to describe Khufu’s transform,
the same matrix and its inverse play the operational roles
in the 3-space and 1-space projective transformations,
respectively. From the results (2.109-111), this matrix is,

khufu’s transform:

h =











15H
17L 0 0 32

17H

0 1 0 0

0 0 1 0

0 0 0 1











(4.55)

K = S3hS1h
−1

K : X 7→ X ′ = KX

This matrix transforms the cube into the truncated
pyramid, keeping the volume fixed, and the height fixed.

The problem only involves various types of “scaling”
operations. No other types of transformations, like trans-
lations or rotations, are required in the description. So,
only that part of the projective transformation matrix
that generate scaling operations have non-zero compo-
nents. Scaling operations typically involve the top row
and main diagonal elements of the 4×4 matrix. Transla-
tions, as in Affine Geometry, are described by the lower
three components in the first column, while, rotations
and shears are described by the remainder.

In the hexpe algebra the transformation matrix in
equation (4.55) could be written,

h =

(

15H

17L
− 1

)

M +

(

E +
32

17H
KS

)

(4.56)

where,

M = (E − IM − JM −KM )/4

KS = (−KR −KL + KA −KZ)/4

We know from Affine Geometry that the m-h number
is responsible for scaling. Thus it is understandable
that a number like M should appear in this problem.
However, in Projective Geometry there are additional
scaling operations, not found in Affine Geometry—these
are the scaling operations that enable us to transform
the cube into the truncated pyramid— and these extra
scale transformations are described by combinations
of the other four basis elements of the hexpe number.
The form, - r - l + a - z, reminds us of the similar
kind of form, r + l + a - z, of the translation

subalgebra introduced previously when discussing the
affine transformation. In fact, here we can construct a
corresponding “scaling subalgebra” to describe these
extra scale operations in projectivities.

We could again define another convenient IJK triplet
to abbreviate this, say we use the subscript s for scalings,
then write IS = (−IR−IL+IA−IZ)/4, etc..the additional
scaling would be more easily described by the number,

h = E + s1IS + s2JS + s3KS (4.57)

Note that the positive and negative units of the set of
elements, {E, IS , JS , KS}, do not form a group. So
again, this is not one of the five groups of order 8. And,
in fact, this number (4.57) only has three degrees of
freedom, not four. The coefficient of the unit, E, is fixed
at the value 1. This allows all numbers of the form, h,
to have multiplicative inverses, even though the unit
elements, IS , JS , KS , themselves have no inverse.

Let, g, be the number obtained from flipping the signs
on the imaginary parts,

g = E − s1IS − s2JS − s3KS (4.58)

then it is easy to see that, g, is the inverse of h,

gh = E (4.59)

which should be obvious also, since the transpose of the
4 × 4 transformation matrix exchanges the translation
parameters with these scaling parameters, so this “pro-
jective scaling” component of the transform is similar in
nature to the translation, thus a parallel analysis follows.

Apart from projectivities that map n-space onto
n-space, there are projective transformations that map
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n-space onto (n-k)-space. For example, when the four
coefficients that determine z′ in (4.28) vanish, i.e.
a30 = a31 = a32 = a33 = 0, we obtain a projection of
3-space onto 2-space; the 3-space points are mapped onto
the plane, (x, y, z) 7→ (x′, y′). This is the more typical
type of projective transformation found in general use,
since artists use this to render drawings and paintings,
computer graphic designers use this to render 3-d images
on the display, cameras and movie projectors effectively
transform the world into flat screen representations, the
human eye captures the objective world’s 3-d images on
the 2-d surface of the retina, and so on.

Perspective Transformations. A special type of
projectivity, called “perspective projection” or “perspec-
tive transformation,” or simply a “perspectivity,” deals
with the way the human eye actually perceives objects
in the three dimensional world. The main feature being
that objects farther away appear smaller in size than
similar objects nearer to the observer. When this natural
vision’s scaling of size with distance is incorporated into
the transformation we call it a perspective projection[18].

Perspective Projection

Cube

Truncated Pyramid

>

FIG. 5: The Eye’s Perspective

Not only the sizes of objects, but the sizes of different
parts of the same object are distorted by perspective,
the nearer face of a cube appearing larger than the face
farther away. This particular scaling makes the cube
take on the appearance of a truncated pyramid.

After discovering the hidden cube in the Great
Pyramid, and reflecting on the fact that, for a cube to
appear to be a truncated pyramid with that particular
orientation, the cube must be hovering in the sky above
the observer, and he must be looking upwards at it,
the Projective Geometer is struck by the apparent sig-
nificance: someone used these giant limestone blocks to

scrawl a message in the desert that says ‘‘look up !’’

Spacetime Transformations. Apart from being
useful in the study of 3-space, hexpe numbers can also
find application in spacetime 4-space. Here the fourth
quaternion parameter is interpreted as time. There is, in

fact, a fundamental connection between scaling and time
in physics. If we heat a gas, it expands. That expansion
isn’t instantaneous, however, it takes time. We have a
scale change when the gas expands. All the molecules
are on average further apart. Change in size is often a
measure of the passage of time. Astronomers use the
expansion of the universe to measure time from the big
bang. Biological organisms also tend to increase in size
with their age—the newly fertilized cell, verses the adult
phenotype, are differentiated by manifest complexity
and size. So, there’s an intricate connection among the
concepts of time, heat, and scale changes, and these are
all naturally represented by the same 4th parameter of
the quaternion variables when modeling phenomena.

We shall see later in this section, that when we
interpret the 4th quaternion coordinate as time, the
Electric field then takes on a corresponding 4th pa-
rameter, which we call the Temporal Field. This can
be identified with that particular reversible heat found
in Thermoelectric phenomena, again illustrating the
time-heat-scaling connection. There are two kinds of
heat, irreversible heat and reversible heat, and there are
two types of scale changes, those described by the main
diagonal components and those described by the top
row components of the projective transformation matrix.

parity & chirality. At the June 1845 meeting
of the British Association for the Advancement of

Science, Hamilton is reported to have requested that the
following conjecture of his be placed on the records[19]:

“Is there not an analogy between the fundamental pair

of equations ij=k ji=-k, and the facts of opposite cur-
rents of electricity corresponding to opposite rotations?”

Hamilton realized that quaternions encapsulate the
handed character of 3-space particularly well. Thus, he
felt that his geometric algebra would accurately describe
the essential polarity found in electric phenomena, that
depends on this right-hand verses left-hand distinction.
When we simultaneously invert all three space coordi-
nates, we also convert the handedness of shapes and
forms in geometry. This operation is called “Parity”,
and given the symbol, P : (x, y, z) 7→ (−x,−y,−z). [20]

Lord Kelvin introduced the term “Chiral” for handed
geometric forms. A geometrical figure has “Chirality”
if “its image in a plane mirror, ideally realized, cannot
be brought to coincide with itself.”[21]

If we’re given a right-hand form, there are two basically
different operations that convert it into the left-hand. We
can invert just one coordinate, e.g. (x, y, z) 7→ (−x, y, z),
like the plane mirror, or three, as in Parity. But, an inver-
sion of two coordinates simultaneously, e.g. (x, y, z) 7→
(−x,−y, z), does not change the hand. Is there a way to
distinguish these two left-hands?
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Pseudo Left verses True Left. Which is the real
left hand? This interesting question arises once we
realize that, IR

∗ 6= IL, and therefore, i∗R 6= iL.

In Hamilton’s quaternions, we usually consider multi-
plication by the conjugate of a quaternion to represent
rotation in the opposite sense, which it does, and there-
fore consider this a left hand rotation, since the basis
elements for quaternions are by definition right handed.
This creates the feeling that the facility for including left
hand actions is already there in his algebra, and a sepa-
rate left hand basis is not needed to express such actions.

Indeed, there are two ways to indicate left hand
actions. One way is to take the conjugate, the other way
is to multiply from the other side of a variable. Thus, if
A · B is considered a right hand action by virtue of the
way A operates on B, then B · A is automatically the
reverse situation, and is now a left hand action by virtue
of the way A is now operating from the opposite side of B.

So, Hamilton’s algebra already has two different ways
of expressing the left hand, since, B · A 6= A · B∗. And,
for certain, we can use his quaternion algebra to express
both right and left actions in the equations that model
phenomena. Let’s consider an example, to see what’s
involved in using right and left combinations.

With ordinary quaternion variables we have two ways
to write a pair product, AB or BA. Since each of these
products contains an implied rotary movement, one
containing a right-turn while the other a left-turn,
we automatically include a bias when writing down ex-
pressions with one or the other form of the pair product.
If we’re trying to model some physical phenomena that
doesn’t have such a bias inherent in the actual process
being represented, we then need to compensate for this
automatic bias by combining the two forms of products.

So, we define the symmetric product, {A, B}, and the
anti-symmetric product, [A, B], to provide alternate ways
to write down quaternion expressions;

{A, B} = 1/2 · (AB + BA) (4.60)

[A, B] = 1/2 · (AB −BA)

If we’re only dealing with ordinary quaternion variables,
then the four forms, AB, BA, {A, B}, [A, B], as defined
above, should suffice to provide enough flexibility to en-
able our model constructions. But when dealing with
operators we have to resolve yet another ambiguity. In
what direction does the operator act? Say, now, A is the
operator, and B is an ordinary quaternion variable. Does
B ·A mean B ← A or B ·A→ ? We have to clarify which
direction the operator acts. So we modify our definitions
accordingly, with right and left arrows,

{A, B} = 1/2 · (A→ B + B ← A) (4.61)

[A, B] = 1/2 · (A→ B −B ← A)

to clarify that the operator A is acting on B regardless
of where the operator sits. Our arrows, → and ←,
resolve that operator ambiguity. Now, it is possible to
engage in more complicated constructions than this, but
we shall not find the need to do so.

Alexander McAulay [1−] , in his Utility of Quaternions
in Physics [22] [2−], suggested [3−] a somewhat more com-
prehensive notation than ours. A product consisting of
any number of quaternion parameters, PQRBHSAZW ,
could be dis-ambiguated by adding a subscript to the
operator [4−] and variable to indicate which variable it
was intended to act upon. Thus, PQRB1HSA1ZW ,
would indicate that, despite its apparent position in the
string of variables, the operator A acts only on the one
variable B, all other parameters being variables that
compose the multi-product through their quaternion
type multiplication, but otherwise are not affected by
the operator.

McAulay’s level of detail is beyond our current require-
ments. Let us now turn to our example of combining
right and left actions in a practical application.

In a previous paper[23] [1−] we showed how to write
Maxwell Equations in Hamilton’s quaternions. We shall
highlight some of the results here for our illustration.

The main idea behind that paper is that by extending
the concept of right actions and left actions from
ordinary products to operators, we have right acting
operators and left acting operators, D → A and A← D,
to consider, which must now both be included in the
expressions used to model physical phenomena.

We start with the hypothesis that spacetime is a
quaternion structure, so that we can write the event vari-
ables, (ct, x, y, z), in the form, r = ct+xi+yj+zk. Then,
any four-vector (quaternion) variable, that depends on
these events, r, can be written,

A = A01 +A1i +A2j +A3k (4.62)

Now, it doesn’t matter what this variable, A, represents
at this point. It could be any given quantity. All
we know is that it has four component parameters
corresponding to the four degrees of freedom in our
spacetime, and that it is a function of those spacetime
points, A = A(r). But, we are now told that this quan-
tity is not a constant, it changes, fluctuates with time
and space, and undergoes various types of modifications
all describable by continuous functions.

So, then we ask—how do we best describe the changes,
the fluctuations, and modifications, of our quantity, A?

First method of attack, is to consider first order dif-
ferential changes. We know that a certain operator de-
scribes the fastest rate of change of a dependent variable,

http://www.asap.unimelb.edu.au/bsparcs/physics/P001306p.htm
http://historical.library.cornell.edu/cgi-bin/cul.math/docviewer?did=00310002&seq=7
http://historical.library.cornell.edu/cgi-bin/cul.math/docviewer?did=00310002&seq=13&frames=0&view=50
http://historical.library.cornell.edu/cgi-bin/cul.math/docviewer?did=00310002&seq=31&frames=0&view=50
http://www.arxiv.org/abs/math-ph/0307038


49

to first order approximation,

d

dr
=

∂

∂ct
1 +

∂

∂x
i +

∂

∂y
j +

∂

∂z
k (4.63)

So, to describe the changes, we evaluate the action of
this operator, d/dr, on the given quantity, A.

There’s only one problem now. We’re in the land of
quaternions, and there are two ways to employ this op-
erator.

d

dr
→ A = or = A ← d

dr
(4.64)

If we let the operator act towards the right, d/dr → A,
we will include a right-hand rotary movement in the de-
scription of the fluctuation we see. If we let the operator
act towards the left, A ← d/dr, we will include a left-
hand rotary movement in the description of the fluctua-
tion we see. Well, what are we looking for? To a certain
extent, the answers we get back depend on the questions
we decide to ask. What if we’re told that the phenomena
being described has no inherent rotary movements, that
the fluctuations are all scale changes, expanding and con-
tracting, shearing and shifting, squeezing and stretching,
and so on. What’s the best question to ask then?

{ d

dr
,A} = or = [

d

dr
,A] (4.65)

We could examine how the quantity changes by using
the symmetric derivative, {d/dr,A}. Or, suppose we’re
told that there are no such scale changes, the quantity
is changing entirely by rotary fluctuations? We might
use the anti-symmetric derivative, [d/dr,A], in this case.
So, one or the other of the two alternative product ex-
pressions might be more appropriate for our description
of the changes. It’s really a matter of our viewpoint.

So then, someone comes along and says, look, these
left and right derivatives mix up too many transforma-
tion types at the same time. I don’t know much about
the physical phenomena under investigation. Not sure
whether it has fluctuations based on rotary changes or
scale changes, or whatever. I need a viewpoint that sep-
arates these mixed up transformation types as much as
possible. Give me the component of the fluctuation that
looks the same when viewed in either a right-hand frame
or a left-hand frame, because then I’ll know I’ve elem-
inated any hand-dependent features. And give me the
component of the fluctuation that looks the most differ-
ent between these right and left coordinate frames, be-
cause then I’ll know what depends on the hand.

(4.66)

E = −{d/dr,A} = −1/2(d/dr→ A+A ← d/dr)

B = + [d/dr,A] = +1/2(d/dr→ A−A ← d/dr)

Well, as it turns out, that’s the symmetric and anti-
symmetric derivatives. Let’s call them, E and B. We

choose to define E with an extra minus sign ′−′, just
because it turns out that, owing to the way the classical
electric field has been defined historically, these then be-
come the electric and magnetic fields when the quantity,
A, under investigation, is the quaternion version of the
electromagnetic potential.

But there is nothing inherently electromagnetic about
this discussion so far. These are simply first order
changes of a quantity, A, broken down into the views of
hand-independent and hand-dependent components.

The quaternion version of the Maxwell Equations

can then be written as the following pair of equations,

[d/dr,B] = +{d/dr, E} (4.67)

[d/dr, E ] = −{d/dr,B} (4.68)

These are the homogeneous equations that describe how
the fields change when there are no source charges nor
sources currents present.

The second of these equations can be easily shown to
be an algebraic identity, when given the definitions of
E and B in (4.66), owing to the fact that quaternions
are associative, and thus the order of differentiation
doesn’t matter—differentiating from the right, before
differentiating from the left, produces the same result as
differentiating from the left, before differentiating from
the right; d/dr→ (A ← d/dr) = (d/dr → A)← d/dr.

It is in the first of these equations where we have our
first contact with real physics. Now we have something
that we can call electromagnetic. It’s a property that
tells us how those components of the first order fluctua-
tions themselves change relative to each other.

Where there are no source charges nor source cur-
rents, the hand-dependent component of the change

in the magnetic field, is always the same as the hand-
independent component of the change in the electric field.

Expressing these quaternion variables in terms of the

usual Heaviside-Gibbs vectors, A = (U, ~A), B = (0, ~B),

E = (T, ~E), we obtain the following vector equations,

curl( ~B) = +1/c · ∂ ~E/∂t + grad(T )

curl( ~E) = −1/c · ∂ ~B/∂t (4.69)

div( ~E) = +1/c · ∂T/∂t

div( ~B) = 0

T = −1/c · ∂U/∂t + div( ~A)

~E = −grad(U)− 1/c · ∂ ~A/∂t (4.70)

~B = curl( ~A)
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Now there’s one twist that is introduced with the
quaternion approach. While the space components of
the quaternion parameters, E and B, are identical with

the classical vector fields, ~E and ~B, the quaternion
electric field has an extra time component, not present
in classical electromagnetism. We call this scalar field
component the temporal field, T . So, what we really

have is, E = (T, ~E), and, B = (0, ~B). This is one of the
essential contributions of this quaternion method to the
theory—a new field component. We shall see, however,
that we still get the classical electromagnetism to fall
out of this analysis, despite the novel field.

When we add the charge density, 4πρ, and current den-

sity, 4π ~J/c, terms, in their usual places, the equations
become,

curl( ~B) = +1/c · ∂ ~E/∂t + grad(T ) + 4π ~J/c

curl( ~E) = −1/c · ∂ ~B/∂t (4.71)

div( ~E) = +1/c · ∂T/∂t + 4πρ

div( ~B) = 0

These are the inhomogeneous electromagnetic equa-
tions. They are very much like the classical equations,
except we’ve got, in addition, two new terms in
the equations, grad(T ) and 1/c · ∂T/∂t, resulting from
the new T -field, which the classical equations don’t have.

But, we can consider the homogenous equations,
without those charge and current sources, and call the

solutions to these equations, ~ET and ~BT , where we’ve
added the subscript, T , to indicate these fields result
from the new homogenous equations with the two
terms, 1/c · ∂T/∂t and grad(T ), effectively playing the
role of charge density and current density, respectively.

Then we put the real charge and current densities
back into the equations, to obtain the expressions for
the fields with the usual source terms present.

Now we define, ~D = ~E − ~ET , and ~H = ~B − ~BT , our
equations become,

curl( ~H) = +1/c · ∂ ~D/∂t + 4π ~J/c

curl( ~E) = −1/c · ∂ ~B/∂t (4.72)

div( ~D) = 4πρ

div( ~B) = 0

Thus we obtain the general media inhomogeneous
equations for Maxwell Equations, with the electric

displacement vector, ~D, and magnetic field vector, ~H,
absorbing the two new terms implicated by the quater-
nion approach. The temporal quantities, 1/c · ∂T/∂t
and grad(T ), are then obscured by the concepts of
polarization and magnetization that describe the media.

So, this example shows, by combining right and
left actions, Hamilton’s algebra can indeed be used
to construct the expressions for practical models that
describe phenomena. Solving these quaternion equations
are another matter. That type of difficulty is what
prompted the construction of vector algebra.

But, we didn’t need to resort to things like com-
plexified quaternions, or biquaternions, or modify the
definition of quaternions so the basis elements have
positive squares, or invent biquats, and the like, all of
which previous authors have employed in their attempt
to find the right way to construct Maxwell’s Equations
from quaternions. Hamilton’s quaternions, in their
native form, are more than adequate to do the job, once
we recognize that both left acting operators and

right acting operators are required.

It’s a non-abelian algebra. One needs to get out of
the frame of mind of an abelian algebraist to recognize
the significance of left and right combinations.

But now we come back to the central issue of the two
left hands. We’ve used the reversal of the pair product,
i.e. AB verses BA, to express the left hand action
in our construction of the model for the electromag-
netic equations. And we’ve made no use of the conjugate.

Our left hand quaternion element, IL, is derived from
this same concept of reversing the pair product, in an
attempt to find ways to solve such dual hand problems.
So, what is the difference between a left hand quaternion
and the conjugate of a right hand quaternion? In other
words, how exactly is IR

∗ different from IL ? Note the
difference, IR

∗IR = E but ILIR = IM . A left hand

quaternion is not the same thing as the conjugate of a
right hand quaternion!

Note that, IM : (w, x, y, z) 7→ (−w,−x, y, z). So, look
what happens to the coordinate of I,

IR
∗IR : x 7→ +x

ILIR : x 7→ −x

Both these operators, IR
∗ and IL, reverse the rotary

movement introduced by IR, but the left hand element
results in an additional inversion of the coordinate pair,
w → −w and x → −x. The true left hand operator
combines with the true right hand operator to create an

inversion in the remaining two axes, while leaving the
plane of the rotary movement in a net unchanged state.
The combination of left and right cancels the rotation,
but at the same time induces a reflection with that very
same rotary plane acting as the mirror.

IM is a mirror operator, it induces a reflection in the
imaginary plane perpendicular to its axis, and at the
same time also causes an inversion of the scalar.
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With our new left hand basis elements we can now
re-write the equations (4.66) that define the electric and
magnetic fields,

Ê = −1/2 ·
(

d

drR
+

d

drL

)

Â (4.73)

B̂ = +1/2 ·
(

d

drR
− d

drL

)

Â (4.74)

with the definitions of the right and left derivative oper-
ators,

d

drR
=

∂

∂ct
1 +

∂

∂x
iR +

∂

∂y
jR +

∂

∂z
kR (4.75)

d

drL
=

∂

∂ct
1 +

∂

∂x
iL +

∂

∂y
jL +

∂

∂z
kL (4.76)

The pair of Maxwell Equations (4.67-68) can then also
be re-written,

(

d

drR
− d

drL

)

B̂ = +

(

d

drR
+

d

drL

)

Ê (4.77)

(

d

drR
− d

drL

)

Ê = −
(

d

drR
+

d

drL

)

B̂ (4.78)

with the operators now all on one side of the variables.
We could combine these two equations by adding and
subtracting one from the other to obtain the alternative
pair,

d

drL
B̂ = − d

drR
Ê (4.79)

d

drR
B̂ = +

d

drL
Ê (4.80)

Then, because we now know the product rules for the
basis elements, iRiL = iLiR = iM , iRjL = kA, jRiL =
kZ , etc.., we have,

d

drR

d

drL
=

(

∂

∂ct

)2

1 (4.81)

+

(

∂

∂x

)2

iM +

(

∂

∂y

)2

jM +

(

∂

∂z

)2

kM

+
∂2

∂y∂z
iA +

∂2

∂z∂x
jA +

∂2

∂x∂y
kA

+
∂2

∂z∂y
iZ +

∂2

∂x∂z
jZ +

∂2

∂y∂x
kZ

+
∂

∂ct

(

∂

∂x
iR +

∂

∂y
jR +

∂

∂z
kR

)

+
∂

∂ct

(

∂

∂x
iL +

∂

∂y
jL +

∂

∂z
kL

)

=
d

drL

d

drR

and so the left and right derivative operators commute
with each other. We can then differentiate the left and

right sides of the equations (4.79-80) to obtain,

d

drL

d

drL
B̂ = − d

drL

d

drR
Ê (4.82)

d

drR

d

drR
B̂ = +

d

drR

d

drL
Ê (4.83)

Adding these equations, and applying the commuting re-
sult from (4.81), we have,

(

(

d

drR

)2

+

(

d

drL

)2
)

B̂ = 0 (4.84)

In a similar way, we obtain the corresponding result for
the electric field,

(

(

d

drR

)2

+

(

d

drL

)2
)

Ê = 0 (4.85)

Now lets call this combined operator that sums the
squares of right and left derivative operators, Ω, except
we also normalize with an extra factor of 1/2, so,

Ω =
1

2

(

(

d

drR

)2

+

(

d

drL

)2
)

(4.86)

Then our homogenous electromagnetic equations just
become, ΩÊ = 0, and, ΩB̂ = 0.

If we started with the definitions of the electric and
magnetic fields given in (4.73-74), and simply replaced
the fields by these definitions in equations (4.77-78),
we’d find that the electromagnetic potential also obeys
this same form of equation, ΩÂ = 0. Here omega is,

Ω =

(

∂

∂ct

)2

−
(

∂

∂x

)2

−
(

∂

∂y

)2

−
(

∂

∂z

)2

+
∂

∂ct

(

∂

∂x
iR +

∂

∂y
jR +

∂

∂z
kR

)

(4.87)

+
∂

∂ct

(

∂

∂x
iL +

∂

∂y
jL +

∂

∂z
kL

)

When there are sources, the inhomogeneous equation for
the electromagnetic potential becomes[24],

ΩÂ = 4πĴ (4.88)

with the quaternion current source, Ĵ = (ρ, ~J/c).

True Left: Now there are two aspects to the con-
cept of the left hand. There is the left hand of dynamic
geometry, which is manifest through rotations. Then,
there’s the left hand of static geometry, which is manifest
through forms. A left hand molecule, for example, can be
turned into a right hand molecule, using a mirror. But,
that same left hand molecule cannot be transformed into
a right hand molecule using either a right hand rotation
or a left hand rotation. The IL is a true complement to
IR in that they then combine to provide for both mirror
and rotary operations that flip the hand of orientation.
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5. FORMAL DEFINITIONS.

Rules of Decomposition. The following rules
enable us to construct our particular flavor of hypercom-
plex numbers from square matrices defined on R.

(1)—To decompose an N × N square matrix, we
construct a set of exactly N2 linearly independent basis
matrices, to keep the number of degrees of freedom the
same in the new hypercomplex number. (2)—For each
basis matrix, B, every column and every row has exactly
one non-zero component, which is either +1 or −1, all
other matrix components are 0. (3)—If E is the unit
matrix, every basis matrix, B, in the set, must have
B2 = ±E; thus det(B) = ±1, since these are matrices
over the reals. (4)—If A and B are in the set, then
either, +AB, or, −AB, is in the set.

We call our new square matrix decomposition

hypercomplex numbers—hypermats. The extended
quaternion we call hexpe number is then an example
of a 42-dim hypermat number, while the extended
complex number we called alternating complex

number is an example of a 22-dim hypermat number.
For an N × N matrix there are 2N−1 × N ! ways to
construct a potential basis matrix, from which we
need to find the right N2 of them. It is likely that
N must be a power of 2 for successful decomposition.

hexpentaquaternions. We define the set of 16
basis elements X

+

b = {e, iP , jP , kP : p = r,l,m,a,z },
according to the following product rules,

e2 = e,

i2R = j2
R = k2

R = −e, i2L = j2
L = k2

L = −e,

∀ u = i, j, k; P = R, L

euP = uP e = uP ,

∀ u, v, w = i, j, k; P, Q, S = R, L

uP (vQwS) = (uP vQ)wS ,

jRkR = −kRjR = iR, kLjL = −jLkL = iL,

kRiR = −iRkR = jR, iLkL = −kLiL = jL,

iRjR = −iRjR = kR, jLiL = −iLjL = kL,

jRkL = kLjR = iA, kRjL = jLkR = iZ ,

kRiL = iLkR = jA, iRkL = kLiR = jZ ,

iRjL = jLiR = kA, jRiL = iLjR = kZ ,

iRiL = iLiR = iM ,

jRjL = jLjR = jM ,

kRkL = kLkR = kM ,

Since this system is generated by the r-h and l-h
basis elements, these are all the rules required to
establish the remaining product laws. From these
defining rules, using the associative product law given,
we construct the following additional derived rules[25].

i2M = j2
M = k2

M = e,

i2A = j2
A = k2

A = e, i2Z = j2
Z = k2

Z = e,

∀ u = i, j, k; P = M, A, Z

euP = uP e = uP ,

∀ u, v, w = i, j, k; P, Q, S = R, L, M, A, Z

uP (vQwS) = (uP vQ)wS ,

jMkM = kM jM = −iM ,

kM iM = iMkM = −jM ,

iMjM = jM iM = −kM ,

jAkA = kAjA = −iA, kZjZ = jZkZ = −iZ ,

kAiA = iAkA = −jA, iZkZ = kZ iZ = −jZ ,

iAjA = iAjA = −kA, jZiZ = iZjZ = −kZ ,

In addition to this set of 16 elements, we de-
fine the complementary set of their negative val-
ues, X

−
b = {−e,−iP ,−jP ,−kP : p = r,l,m,a,z }.

These two together form the group of order 32,
called the Hexpentaquaternion Group: Xb = X

+

b ∪ X
−
b .

The abbreviation Hexpe may be used for conve-
nience. Accordingly, we define an Hexpe Number as the
linear combination of these basis elements with real
valued coefficients,

h = h0e

+ hR1iR + hR2jR + hR3kR

+ hL1iL + hL2jL + hL3kL

+ hM1iM + hM2jM + hM3kM

+ hA1iA + hA2jA + hA3kA

+ hZ1iZ + hZ2jZ + hZ3kZ

hP ∈ R

The symbol Xn represents the set of all such hexpe

numbers, and includes the special number 0. With the
two operators of addition, +, and multiplication, · , this
set forms the Hexpe Algebra. If the context is clear
whether reference is being made to the group of basis el-
ements, or the algebra of hypercomplex numbers built
on this group of elements, the symbol X, without the
subscript, maybe used to refer to either, i.e. Xb or Xn.
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Use of the multiplication symbol, · , is optional, it
being understood that simple juxtaposition represents
the same multiplication operation, i.e. gh ≡ g · h.

The element, e, is called the scalar element, and may
be replaced by the real unit, 1, it being understood that,
for any λ ∈ R, we have, λ · e ≡ λ · 1 ≡ λ.

Let, ek, k = 0, 1, 2, ...15, be the sixteen basis elements,
{e, iR, jR, ...jZ , kZ}, with the scalar element, e0 = e, and
the remaining 15 imaginary elements arranged in any
particular fixed order. Then, any three hexpe numbers,
h, g, f , may be written,

h =

15
∑

k=0

hkek, g =

15
∑

k=0

gkek, f =

15
∑

k=0

fkek

where the coefficients, hk, gk, fk, ∈ R. Then, the rules of
addition and multiplication are,

h + g =
15
∑

k=0

(hk + gk)ek, h · g =
15
∑

k=0

15
∑

j=0

hkgjekej

and we have the following, Closure, Commutativity,

Identity, Associative rules,

∀ h, g, f ∈ Xn

h + g ∈ Xn

h + g = g + h

h + 0 = 0 + h = h

(h + g) + f = h + (g + f)

h · g ∈ Xn

h · g 6= g · h
h · e = e · h = h

h · (g · f) = (h · g) · f

and Distributive Laws;

h · (g + f) = (h · g) + (h · f)

(h + g) · f = (h · f) + (g · f)

The commutative law for multiplication does not hold
generally, i.e. h · g 6= g ·h, but there are subsets of hexpe
numbers that commute, i.e. h · g = g · h; and there are
subsets that anti-commute, i.e. h · g = −g · h. So the 6=
sign here means “not always” rather than “never.”

Inverses exist for the + operator, but not always for
the · operator. For addition, the inverse of, h, is writ-
ten, −h, and accordingly, the auxiliary operation, −, of
subtraction, is defined,

h + (−h) = 0

h + (−g) ≡ h− g

The multiplicative inverse of, h, is written, h−1, and is
given by the general formula

h · h−1 = h−1 · h = e

h−1 = (w0e

+ wR1iR + wR2jR + wR3kR

+ wL1iL + wL2jL + wL3kL

+ wM1iM + wM2jM + wM3kM

+ wA1iA + wA2jA + wA3kA

+ wZ1iZ + wZ2jZ + wZ3kZ)/d

wP ∈ R

The weight factors, wP , are given by the cubic form,

wP = h3
P − hP

∑

α

sP,αh2
α − 2

∑

αβγ

sP,αβγhαhβhγ

where, P ∈ {0, R1, ..., Z3}, and the normalizing determi-
nant factor is,

d = h0 · w0 −
∑

k=1,2,3

(hRk · wRk + hLk · wLk)

+
∑

k=1,2,3

(hMk · wMk + hAk · wAk + hZk · wZk)

The signs, sP,α and sP,αβγ , and ranges α, β, γ, are given
by the expanded forms for wP in (table t.3-IV ).

When the multiplicative inverse for a number, g, exists,
the auxiliary operations, / and \, i.e. forward slash and
backslash, for division from the right and division

from the left, are defined,

h/g = h · g−1, g\h = g−1 · h
For convenience also, the fraction variants of these di-
visions are defined with the two, \dashv and \vdash,
symbols, placed to the right and left of the denominator
expression,

h/g =
h

g ⊣ , g\h =
h

⊢ g

and, when available, two variations of \frac, where the
horizontal bar combines with these symbols, to form
right and left horizontal bars, —⊣ and ⊢—, may be
used. The suggested names for these fraction commands
are, \rfrac and \lfrac.

r,l,m,a,z These symbols may be referred to by the
names: right, left, meta, alpha, zeta. The lat-
ter three being collectively referred to as middle-hand
numbers—the term ‘hand” being generally extended
to apply now to any particular 4-d hypercomplex
sub-algebra of the hexpe number system.

pair products. Any arbitrary hexpe number, h, can
be written as the sum of rl pair products,

h = A1B
′
1 + A2B

′
2 + A3B

′
3 + . . . + AnB′

n

where, Ak are r-h quaternions, and B′
k are l-h quater-

nions.
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pivot variables. Let Hamilton’s right hand quater-
nions be the set HR ⊂ Xn, and left hand quaternions
be the set HL ⊂ Xn. The conjugate of a parameter,
B ∈ HR or B ∈ HL, is obtained by reversing the signs
on the imaginary units of the number, and is formally
written, B∗. A hand transformation on a parameter,
B, is one that changes the basis elements from right hand
to left hand, or left hand to right hand, while leaving the
coefficients unchanged. This change is much like the tak-
ing the conjugate, except here the real left hand replaces
the right hand, instead of the pseudo left constructed by
sign changes. We write BH , to indicate this hand change.

(B0 + B1iR + B2jR + B3kR)∗ = (B0 − B1iR − B2jR − B3kR)

(B0 + B1iR + B2jR + B3kR)H = (B0 + B1iL + B2jL + B3kL)

(B0 + B1iL + B2jL + B3kL)∗ = (B0 − B1iL − B2jL − B3kL)

(B0 + B1iL + B2jL + B3kL)H = (B0 + B1iR + B2jR + B3kR)

We also use the descriptive subscripts r-l to clarify which
basis is being employed to accompany the same set of
coefficients, {B0, B1, B2, B3}, for a given parameter, B,
under consideration. Then, BL = (BR)H , and, BR =
(BL)H . It being understood that, for a given B,

BR ≡ (B0 + B1iR + B2jR + B3kR)

BL ≡ (B0 + B1iL + B2jL + B3kL)

Now let the parameters, q, B ∈ HR, then the product,
qB, may be written, BH q̂, where BH ∈ HL, and q̂ is
called a “pivot variable” represented by the caret ˆ
placed on top of the parameter.

Then, for products involving ‘pivot variables’
the following Commutative, Associative, and
Distributive laws hold,

qB = BH q̂

A(BH q̂) = (ABH)q̂

Gq̂ + F q̂ = (G + F )q̂

H(Gq̂ + F p̂) = (HG)q̂ + (HF )p̂

where

H, G, F ∈ Xn and

q, p, A, B ∈ HR , BH ∈ HL

= or =

q, p, A, B ∈ HL , BH ∈ HR

From these four laws, we conclude the following special
cases,

A(qB) = A(BH q̂) = (ABH)q̂

Aq = Aq̂, when B = 1

q = q̂, when A = B = 1

That is to say, if all factors are already on the l.h.s of
the variable, the q may be automatically promoted to

a pivot, q̂; and again, if neither left nor right factors
are present on a variable, q, that variable may be
immediately promoted to a pivot, q̂. But, when a
non-trivial factor (i.e. B /∈ R) is present on the r.h.s of
the variable, q, that variable may only be promoted to a
pivot by moving the factor over to the l.h.s where the
factor then changes its hand.

There are two distributive laws involving pivots—a
right-distributive law, and a left-distributive law of signif-
icant difference. The first defines how a quaternion pivot
variable on the right distributes over a sum of hexpe

number parameters, the second defines how an hexpe

number factor on the left distributes over a sum of quater-
nion pivots themselves also containing l.h.s. hexpe fac-
tors. This latter distributive law results in an important
special case, when, F = −1, and, p̂ = ĉ, i.e. the second
quaternion, p, is the usual inhomogeneous parameter, c,
in the linear equation,

H(Gq̂ − ĉ) = (HG)q̂ −Hĉ

During the manipulation of algebraic expressions,
parameters in the expression may be converted to and
from pivot equivalents at any time during the process
of reckoning. Thus some terms in the expression may
contain pivots, while others contain the related variables
in the original state. However, an expression involving
a mix of variables and pivot equivalent variables may
only employ a distributive law to aggregate and further
simplify the expression iff either all the relevant variables
are in pivot format or all the relevant variables are in
the original native format.

The most general linear quaternion equation may be
written,

A1qB1 + A2qB2 + ... + AnqBn − C = 0

where either, Ak, Bk, C, q ∈ HR, or, Ak, Bk, C, q ∈ HL.
But, in either case, the equation may be re-arranged us-
ing the given laws thus,

A1(qB1) + A2qB2 + ... + AnqBn − C = 0

A1(B
H
1 q̂) + A2qB2 + ... + AnqBn − C = 0

(A1B
H
1 )q̂ + A2qB2 + ... + AnqBn − C = 0

(A1B
H
1 )q̂ + A2(qB2) + ... + AnqBn − C = 0

(A1B
H
1 )q̂ + A2(B

H
2 q̂) + ... + AnqBn − C = 0

(A1B
H
1 )q̂ + (A2B

H
2 )q̂ + ... + AnqBn − C = 0

((A1B
H
1 ) + (A2B

H
2 ))q̂ + ... + AnqBn − C = 0

...

((A1B
H
1 ) + (A2B

H
2 ) + ... + (AnBH

n ))q̂ − C = 0

To proceed to the next step, we must convert the inho-
mogeneous parameter, C, to pivot format, in order to
apply the second distributive law, which is automatically
involved when we multiply the equation throughout by
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some chosen parameter. In this case, we need to multiply
by the inverse of q̂’s l.h.s factor, to reduce this term to
just q̂. Given that any quaternion that has only trivial
factors on its left and right may be promoted immedi-
ately at any time to pivot, we may write,

((A1B
H
1 ) + (A2B

H
2 ) + ... + (AnBH

n ))q̂ − Ĉ = 0

Now we may multiply by that inverse,

((A1B
H
1 ) + (A2B

H
2 ) + ... + (AnBH

n ))−1 ·
[((A1B

H
1 ) + (A2B

H
2 ) + ... + (AnBH

n ))q̂ − Ĉ] = 0

and apply the “second distributive law” for pivots,
which yields,

q̂ − ((A1B
H
1 ) + (A2B

H
2 ) + ... + (AnBH

n ))−1Ĉ = 0

Given that the pivot variable, q̂, stands all by itself, with
neither left nor right factor parameters, we may immedi-
ately convert this back to the original quaternion format,
q, and thus now write this equation,

q − ((A1B
H
1 ) + (A2B

H
2 ) + ... + (AnBH

n ))−1Ĉ = 0

In general, if this inverse exists, it may be written in the
form,

((A1B
H
1 ) + (A2B

H
2 ) + ... + (AnBH

n ))−1 =

P1Q
H
1 + P2Q

H
2 + ... + PmQH

m

where the parameters, Pk, Qk, are of the same hand-
orientation as the given parameters, Ak, Bk, and thus,
QH

k , are the alternate hand versions of the Qk. This
then lets us write the equation,

q − ((P1Q
H
1 ) + (P2Q

H
2 ) + ... + (PmQH

m))Ĉ = 0

and continue to simplify, using the first distributive law
for pivots,

q − (P1Q
H
1 )Ĉ − ((P2Q

H
2 ) + ... + (PmQH

m))Ĉ = 0

q − P1(Q
H
1 Ĉ)− ((P2Q

H
2 ) + ... + (PmQH

m))Ĉ = 0

q − P1(CQ1)− ((P2Q
H
2 ) + ... + (PmQH

m))Ĉ = 0

q − P1CQ1 − ((P2Q
H
2 ) + ... + (PmQH

m))Ĉ = 0

...

q − P1CQ1 − P2CQ2 − ...− PmCQm = 0

finally, moving the known quantities to the r.h.s of the
equation, we can present the solution,

q = P1CQ1 + P2CQ2 + ... + PmCQm

where all the parameters are once again in either
Hamilton’s right hand quaternions, or all in Hamilton’s
left hand quaternions, depending on which system the
original linear problem is specified.

algebra of the split operator

The concept of the pivot variable is useful in the
solution of linear equations. However, this method
requires the pivot always stand to the right of the
expressions, and so it is difficult to extend this technique
to polynomials of degree higher than one. Accordingly,
we may also define corresponding expressions, to those in
this split representation technique, using the alternative
split operator method, where we introduce, · and ⊗,
the two multiplication operators, to now replace the
single product. This then becomes the starting point for
research in further generalizations of this algebra to solve
equations of higher degree. The methods developed so
far in this direction are incomplete, and discussion is
beyond the scope of this paper. Here we only deal with
the linear quaternion equation, and this is adequately
solved with the pivot method.



56

6. CONCLUSIONS.

Algebra of Geometry. When Hamilton went
looking for his “triplets,” the buzz and excitement of
the times was all focused on finding an extension to
the complex number that could facilitate ‘rotations’

in 3-space the way the complex number so efficiently
handled rotations in the plane. With a little more prod-
ding, mathematicians of the time would have found that
similar number extensions could also express 3-space
transformations other than just rotations. After all,
rotations are only one part of the general transformation
of a space object. But for some reason, the fixation was
on rotations, and after the discovery of quaternions the
fascination faded.

The search went off in the direction of finding higher
dimensional numbers with the restrictive, but useful,
‘square norm’ property, rather than seeking other
numbers that might provide alternative ways to view
and efficiently express other transformations in the
already established space geometry. Yet, Hamilton
was seeking to develop an algebra of geometry—the
regular geometry of three dimensions which was already
known through its cartesian coordinate formulation.
This was his impulse. Well, that geometry contains more
than just translations, rotations, and proportional scale
changes. There are nonproportional scale changes
also to consider, which can’t be easily expressed with
Hamilton’s numbers.

It is interesting, however, that by looking for a way
to include the left-hand quaternions which Hamilton
neglected, we are then automatically led to also include
those very additional number extensions which in fact
do enable us to construct a more complete geometric
algebra for the 3-space.

Quaternion Equations. One of the major challenges
in quaternion algebra is how to efficiently solve quater-
nion equations. Simple polynomial equations are rather
difficult, but even the linear equation requires the use of
additional methods over that of regular commutative al-
gebra. Here, we must generally resort to matrix algebra
to find our solutions. With the introduction of our new
hexpe algebra, and its corresponding pivot variable op-
erational techniques, we now have an alternative method
to solve the most general linear equations of the type,

A1qB1 + A2qB2 + ... + AnqBn = C (2.1)

being able to easily express the solution in the form,

q = P1CQ1 + P2CQ2 + ... + PmCQm (2.221)

using the sort of elementary algebra procedures that are
very familiar in commutative algebra. So, even though
non-abelian algebra presents a challenge, for the general

linear equation in one variable, at least, we are able to
reduce the work of reckoning in the discovery of solutions
to a type no more excessive than regular algebra usually
requires.

One can then extend these ideas further to solve
systems of linear equations in more than one
quaternion variable. For example, a pair of linear equa-
tions in two unknown quaternion variables, p and q,

A11pB11 + A12qB12 = C1 (6.1)

A21pB21 + A22qB22 = C2 (6.2)

where all parameters, As, Bs, Cs, p, q, are right hand
quaternions, could be re-written,

A11B
′
11p̂ + A12B

′
12q̂ = Ĉ1 (6.3)

A21B
′
21p̂ + A22B

′
22q̂ = Ĉ2 (6.4)

with the B parameters converted into their left hand B′

counterparts. Then, if the coefficients of the q̂ have in-
verses, we may multiply by these to obtain,

(A12B
′
12)

−1A11B
′
11p̂ + q̂ = (A12B

′
12)

−1Ĉ1 (6.5)

(A22B
′
22)

−1A21B
′
21p̂ + q̂ = (A22B

′
22)

−1Ĉ2 (6.6)

then solving for, p̂, we get,

p̂ =
(A12B

′
12)

−1Ĉ1 − (A22B
′
22)

−1Ĉ2

⊢ ((A12B′
12)

−1A11B′
11 − (A22B′

22)
−1A21B′

21)
(6.7)

similarly, if coefs of p̂ have inverses, solving for, q̂, we get,

q̂ =
(A11B

′
11)

−1Ĉ1 − (A21B
′
21)

−1Ĉ2

⊢ ((A11B′
11)

−1A12B′
12 − (A21B′

21)
−1A22B′

22)
(6.8)

The problem can now be expressed in the usual matrix
form,

(

A11B
′
11 A12B

′
12

A21B
′
21 A22B

′
22

)(

p̂

q̂

)

=

(

Ĉ1

Ĉ2

)

(6.9)

with the recognition that the inverse of a matrix with
non-abelian components is a bit more complicated,

(6.10)
(

p̂

q̂

)

=

(

1

D1
0

0 1

D2

)(

(A12B
′
12)

−1 −(A22B
′
22)

−1

(A11B
′
11)

−1 −(A21B
′
21)

−1

)(

Ĉ1

Ĉ2

)

our simple overall determinant factor, in the usual matrix
algebra, being replaced here with a diagonal matrix of
different dividing factors,

(6.11)

D1 = (A12B
′
12)

−1A11B
′
11 − (A22B

′
22)

−1A21B
′
21

D2 = (A11B
′
11)

−1A12B
′
12 − (A21B

′
21)

−1A22B
′
22
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and the non-commuting nature of the parameters pre-
vents us from simplifying without further information on
the makeup of each parameter. But such an inverse can,
nevertheless, always be expressed in the general form[26],

(

A11B
′
11 A12B

′
12

A21B
′
21 A22B

′
22

)−1

=

(

P11pQ
′
p11 P12qQ

′
q12

P21rQ
′
r21 P22sQ

′
s22

)

(6.12)

when it exists; where the Ps are right hand quaternions,
and the Q′s are left hand quaternions. Then, we can
write (6.10) in the form,

(

p̂

q̂

)

=

(

P11pQ
′
p11 P12qQ

′
q12

P21rQ
′
r21 P22sQ

′
s22

)(

Ĉ1

Ĉ2

)

(6.13)

applying matrix product rules, this gives,

(

p̂

q̂

)

=

(

P11pQ
′
p11Ĉ1 + P12qQ

′
q12Ĉ2

P21rQ
′
r21Ĉ1 + P22sQ

′
s22Ĉ2

)

(6.14)

and then finally, we move the left hand quaternions, i.e.
Q′s, over to the right of the inhomogeneous parameters,
where they change into right hand quaternions, i.e. Qs,
letting us remove the carets, and we have,

(

p

q

)

=

(

P11pC1Qp11 + P12qC2Qq12

P21rC1Qr21 + P22sC2Qs22

)

(6.15)

which is our solution for the pair of quaternions, p and
q, everything being expressed once again entirely in the
right hand quaternion system.

The ease with which this technique lets us think and
work with familiar constructs cannot be denied—the
power of the method lies in its essential simplicity. The
hexpe algebra, even if it were only used to solve such
quaternion problems, would be worthy of study.

Extending Numbers. Hamilton was only look-
ing for numbers with three parameters, written either,
(x, y, z) or x + yi + zj, to describe 3-space rotations.
But after 10 years (1833-1843)[27][1−] struggling with
the concept of how to appropriately multiply these
triplets, he finally got his breakthrough when he realized
he needed just one more imaginary parameter, k.
He could then solve this problem, with numbers of
the form, q = w + xi + yj + zk, and the additional
insight that he needed to relax the commutative law for
products, ij = −ji = k, ki = −ik = j, jk = −kj = i.
Our challenge to find the extension to Hamilton’s
quaternions that would allow the inclusion of both
left and right hands in the same algebra is a little
less dramatic, but does have one thing in common
with Hamilton’s discovery—we also find we need more
imaginary parameters than we initially sought. The
seven basis elements {1, iR, jR, kR, iL, jL, kL}, need

to be augmented by a further nine imaginary units,
{iM , jM , kM , iA, jA, kA, iZ , jZ , kZ}, to complete the
algebra. Moreover, one needs to relax the requirement
that every number have a multiplicative inverse, and
settle instead for sub-domains where inverses are defined
which are themselves bounded by other sub-domains
where they are not.

These domains where the inverse fails to exist are not
randomly placed about in the space, however, but fall on
well defined planes that define sensible limits of physi-
cal transformations. The middle hand numbers generate
nonproportional scale changes, without any mathemati-
cal restriction on the signs of the scale factors. Scale fac-
tors can be positive or negative. Thus they can include
inversions or reflections accompanying the pure magni-
tude change. Consider the archetypal middle-hand trans-
formation generated by the m-h number;

hM :











w

x

y

z











7→











w′

x′

y′

z′











=











a00w

a11x

a22y

a33z











(6.16)

Here the scale factors, a00, a11, a22, a33, are the same
four factors that appear in the denominator of the num-
ber’s inverse formula. The norm, N4

M = a00a11a22a33,
vanishes when one or more of these scale factors are
zero. That’s the only time the inverse fails to exist. But,
these are the times when the the continuous changing
of a scale factor would take it from the positive to
negative sign, resulting in an inversion or reflection
of the coordinate undergoing transformation. Now, a
continuous change cannot take a physical object into its
mirror image. So what these planes do, is divide the
region of the 4-d hypercomplex space up into spaces
where continuous change of the parameters result in
physically possible transformations, and what is im-
possible physically is also prevented mathematically by
requiring a discontinuous jump across one of these planes.

This then allows us to treat the discontinuous planes
the way complex analysis treats branch cuts and singular
points, and to develop an analytic calculus for the hexpe

algebra to the extent possible within the constraints of
non-abelian products. So, although the hexpe algebra

appears formidable with its many degrees of freedom and
times of failing inverses, it really doesn’t add much more
complexity to that already existing under Hamilton’s
non-commuting quaternion calculus. And, as we have
seen, the hexpe algebra actually helps to solve some
problems that Hamilton’s algebra could only propose
but not then find solutions for without the outside help
of something like matrix algebra lending a helping hand.

hexadecanions. Now there is already another
previously established favorite hypercomplex system
with sixteen degrees of freedom. That system is called

http://historical.library.cornell.edu/cgi-bin/cul.math/docviewer?did=05230001&seq=28&frames=0&view=50
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Hexadecanions[28]. These numbers are obtained
from a pair of octonions through a process called the
Cayley-Dickson construction for pair products. The
octonions are themselves constructed from a pair of
quaternions using this same process. The quaternions
are constructed from complex numbers this way again;
the complex numbers constructed from the reals.

cayley-dickson process[29]: (A, B)∗ ≡ (A∗,−B)

(A, B)(C, D) = (AC −DB∗, A∗D + CB) (6.17)

The Cayley-Dickson process is a method of “doubling”
that creates new algebras from existing ones, by using a
pair of numbers from a lower dimensional hypercomplex
algebra. This whole idea of multiplying such doublets
originates with Hamilton, who introduces the concept
in the 1830s to represent complex numbers by ordered
pairs (x, y), equivalent to the then usual x + iy form
of the number. Cayley and Dickson then develop
the idea for the particular “normed” algebras that
appeared on the scene soon after Hamilton’s discovery of
quaternions opened up the whole idea of extending the
number system to higher and wilder entertaining entities.

Hamilton’s good friend John Graves discovers the
eight dimensional hypercomplex variety soon after the
announcement of quaternions. He chooses to call these
numbers Octaves, and gives Hamilton the task of
publicizing the discovery for him. Hamilton, however,
forgets to do this, and Cayley independently discovers
and publishes the same system 15 months later, gets
the credit, and the 8-d variety comes to be called either
Cayley numbers or Octonions.

From the Cayley-Dickson construction, we can see that
the hexadecanions are built out of four right-hand

quaternions. The hexpentaquaternions, by contrast,
are built from a pair of left and right quaternions,
which generate an additional triplet of commutative 4-d
hypercomplex numbers in the process of constructing
the algebra. The hexpe construction process is derived
from matrix algebra, rather than erected out of thin
air with a special pair product construction like the
Cayley-Dickson algebras. So, in one sense, the hexpe

algebra is not new. It is equivalent to an old and
already established matrix algebra[30]. It is only a
new way of looking and working with an old familiar
subject. It is a re-interpretation of an existing
algebra, demonstrating that the old algebra is equivalent
to an hypercomplex number with basis elements being
the square roots of +1 and −1, just like the other
hypercomplex algebras in existence, and showing that
left and right quaternions combined together in one
system were already playing a role, hidden from view,
behind the scenes in every transformation matrix.

In the hexpe algebra left and right quaternions com-
mute with each other, even though left hand quaternions

do not commute among themselves, neither do right hand
quaternions commute among themselves.

ARBL = BLAR, AR ∈ HR, BL ∈ HL (6.18)

If we found other ways to combine the left hand and
right hand quaternions into one system, we should not
expect this commuting property to continue to hold.

The Cayley-Dickson process is a beautiful system, sim-
ple, and elegant. But there is one problem with the whole
idea. It continually stacks up right hand upon right hand,
erecting a geometrically unbalanced structure that denies
the reality before our very eyes—that the universe has
right hand and left hand components. Everywhere we
look, our experience instructs us that physical phenom-
ena possesses this dual nature of left-hand and right-hand
in combination. The question then is, can we adopt the
beautiful construction of Cayley-Dickson and find a way
to balance it, so that we can better reflect the true dual
handedness of our actual physical space? [31]

Octivos (6.19)

1 : (A, B)(C, D) = (AC −BHC, AHD −BD)

2 : (A, B)(C, D) = (AC − (BD)H , AHD + CHB)

3 : (A, B)(C, D) = (AC − (B∗D)H , (A∗)HD + CHB)

4 : (A, B)(C, D) = (AC − (D∗B)H , D∗AH + CHB)

A, C ∈ HR, B, D ∈ HL

octivos. Instead of pairing up two right hand quater-
nions, therefore, we consider doublet products with one
right and one left hand number in the pair. Say then that
we have, (A, B) ≡ (AR, BL), AR ∈ HR, BL ∈ HL, etc..
we’d like to define the product, (A, B)(C, D) = (E, F ),
so that, (E, F ) ≡ (ER, FL), ER ∈ HR, FL ∈ HL. If
we just put this pair into the existing Cayley-Dickson
formula, we’d end up with a mix of left and right quater-
nions in each half of the resultant doublet. But then
we recall that the conjugate is really a way to con-
struct a pseudo left hand from a right hand quater-
nion, so we think that maybe we can just replace this
operation with the true hand transformation operator,
BD∗ 7→ BDH and A∗D 7→ AHD. That doesn’t quite
work out either, but with a little thought, remember-
ing that (BD)H = DHBH , and realizing that we’d also
maybe like to have, (A, 0)(C, 0) = (AC, 0), so that the
product of two r-h quaternions result in another r-h,
and Similarly, (0, B)(0, D) = s(0, BD), the product of
two l-h quaternions should result in a l-h, with the pos-
sible exception of some overall sign, s, factoring in all
these deliberations, we eventually end up with the four
candidate definitions in (6.19). We shall call these num-
bers “octivos”[32]. The octivo algebras are also non-
associative and non-commutative just like the octonions.
We leave it as an exercise for the reader to review the oc-
tivo product tables (table t.4 ), explore these numbers,
and decide if they are interesting numbers to study.
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table t.1

TABLE OF 16 MATRIX BASIS ELEMENTS

IR = JR = KR = IL = JL = KL =

JRKR = −KRJR KRIR = −IRKR IRJR = −JRIR KLJL = −JLKL ILKL = −KLIL JLIL = −ILJL0BBB� 0 −1 0 0

+1 0 0 0

0 0 0 −1

0 0 +1 0

1CCCA ,

0BBB� 0 0 −1 0

0 0 0 +1

+1 0 0 0

0 −1 0 0

1CCCA ,

0BBB� 0 0 0 −1

0 0 −1 0

0 +1 0 0

+1 0 0 0

1CCCA ,

0BBB� 0 −1 0 0

+1 0 0 0

0 0 0 +1

0 0 −1 0

1CCCA ,

0BBB� 0 0 −1 0

0 0 0 −1

+1 0 0 0

0 +1 0 0

1CCCA ,

0BBB� 0 0 0 −1

0 0 +1 0

0 −1 0 0

+1 0 0 0

1CCCA
IA = JA = KA = IZ = JZ = KZ =

JRKL = +KLJR KRIL = +ILKR IRJL = +JLIR KRJL = +JLKR IRKL = +KLIR JRIL = +ILJR0BBB� 0 +1 0 0

+1 0 0 0

0 0 0 −1

0 0 −1 0

1CCCA ,

0BBB� 0 0 +1 0

0 0 0 −1

+1 0 0 0

0 −1 0 0

1CCCA ,

0BBB� 0 0 0 +1

0 0 −1 0

0 −1 0 0

+1 0 0 0

1CCCA ,

0BBB� 0 −1 0 0

−1 0 0 0

0 0 0 −1

0 0 −1 0

1CCCA ,

0BBB� 0 0 −1 0

0 0 0 −1

−1 0 0 0

0 −1 0 0

1CCCA ,

0BBB� 0 0 0 −1

0 0 −1 0

0 −1 0 0

−1 0 0 0

1CCCA
E = IM = JM = KM =

−IRIR = −ILIL IRIL = +ILIR JRJL = +JLJR KRKL = +KLKR0BBB�+1 0 0 0

0 +1 0 0

0 0 +1 0

0 0 0 +1

1CCCA ,

0BBB�−1 0 0 0

0 −1 0 0

0 0 +1 0

0 0 0 +1

1CCCA ,

0BBB�−1 0 0 0

0 +1 0 0

0 0 −1 0

0 0 0 +1

1CCCA ,

0BBB�−1 0 0 0

0 +1 0 0

0 0 +1 0

0 0 0 −1

1CCCA
The products of the four elements {IR, JR, IL, JL} generate

all the other members in this set of sixteen matrices, and under

the binary operation of matrix multiplication, this set, together

with their negatives, then form a representation of the particular

Group of Order 32 called the hexpentaquaternion group: Xb.

⊢

.

the

hexpentaquaternion

group, Xb
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table t.2

× E IA JA KA IR JR KR IM JM KM IL JL KL IZ JZ KZ

E E IA JA KA IR JR KR IM JM KM IL JL KL IZ JZ KZ

IA IA E −KA −JA −KM −KL JZ IZ −IL −IR −JM KZ −JR IM KR JL

JA JA −KA E −IA KZ −IM −IL −JR JZ −JL −KR −KM IZ KL JM IR

KA KA −JA −IA E −JL IZ −JM −KL −KR KZ JZ −IR −IM JR IL KM

IR IR KM −KZ −JL −E KR −JR −IL IZ −IA IM KA JZ −JM −KL JA

JR JR −KL IM −IZ −KR −E IR −JA −JL JZ KZ JM IA KA −KM −IL

KR KR −JZ −IL JM JR −IR −E KZ −KA −KL JA IZ KM −JL IA −IM

IM IM IZ JR KL −IL JA −KZ E −KM −JM −IR −JZ KA IA −JL −KR

JM JM IL JZ KR −IZ −JL KA −KM E −IM IA −JR −KZ −IR JA −KL

KM KM IR JL KZ IA −JZ −KL −JM −IM E −IZ JA −KR −IL −JR KA

IL IL JM −KR −JZ IM KZ JA −IR −IA IZ −E −KL JL −KM KA −JR

JL JL −KZ KM −IR KA JM IZ JZ −JR −JA KL −E −IL −KR −IM IA

KL KL −JR −IZ IM JZ IA KM −KA KZ −KR −JL IL −E JA −IR −JM

IZ IZ IM −KL −JR JM −KA −JL IA IR IL KM −KR −JA E −KZ −JZ

JZ JZ −KR JM −IL −KL KM −IA JL JA JR −KA IM −IR −KZ E −IZ

KZ KZ −JL −IR KM −JA −IL IM KR KL KA −JR −IA JM −JZ −IZ E

THE 16 × 16 PRODUCT TABLE FOR THE POSITIVE “HEXPE” BASIS ELEMENTS

‖
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table t.3

wP IN TERMS OF THE COFACTOR Fij :

w0 = (+F00 + F11 + F22 + F33)/4

wM1 = (−F00 − F11 + F22 + F33)/4

wM2 = (−F00 + F11 − F22 + F33)/4

wM3 = (−F00 + F11 + F22 − F33)/4

wA1 = (+F01 + F10 − F23 − F32)/4

wA2 = (+F02 − F13 + F20 − F31)/4

wA3 = (+F03 − F12 − F21 + F30)/4

wZ1 = (−F01 − F10 − F23 − F32)/4

wZ2 = (−F02 − F13 − F20 − F31)/4

wZ3 = (−F03 − F12 − F21 − F30)/4

wR1 = (+F01 − F10 + F23 − F32)/4

wR2 = (+F02 − F13 − F20 + F31)/4

wR3 = (+F03 + F12 − F21 − F30)/4

wL1 = (+F01 − F10 − F23 + F32)/4

wL2 = (+F02 + F13 − F20 − F31)/4

wL3 = (+F03 − F12 + F21 − F30)/4

M00 = a11(a22a33 − a32a23)

− a12(a21a33 − a31a23)

+ a13(a21a32 − a31a22)

M01 = a10(a22a33 − a32a23)

− a12(a20a33 − a30a23)

+ a13(a20a32 − a30a22)

M10 = a01(a22a33 − a32a23)

− a02(a21a33 − a31a23)

+ a03(a21a32 − a31a22)

M11 = a00(a22a33 − a32a23)

− a02(a20a33 − a30a23)

+ a03(a20a32 − a30a22)

M20 = a01(a12a33 − a32a13)

− a02(a11a33 − a31a13)

+ a03(a11a32 − a31a12)

M21 = a00(a12a33 − a32a13)

− a02(a10a33 − a30a13)

+ a03(a10a32 − a30a12)

M30 = a01(a12a23 − a22a13)

− a02(a11a23 − a21a13)

+ a03(a11a22 − a21a12)

M31 = a00(a12a23 − a22a13)

− a02(a10a23 − a20a13)

+ a03(a10a22 − a20a12)

⊢page-i⊣

wP IN TERMS OF THE MINORS Mij :

w0 = (+M00 + M11 + M22 + M33)/4

wM1 = (−M00 −M11 + M22 + M33)/4

wM2 = (−M00 + M11 −M22 + M33)/4

wM3 = (−M00 + M11 + M22 −M33)/4

wA1 = (−M01 −M10 + M23 + M32)/4

wA2 = (+M02 −M13 + M20 −M31)/4

wA3 = (−M03 + M12 + M21 −M30)/4

wZ1 = (+M01 + M10 + M23 + M32)/4

wZ2 = (−M02 −M13 −M20 −M31)/4

wZ3 = (+M03 + M12 + M21 + M30)/4

wR1 = (−M01 + M10 −M23 + M32)/4

wR2 = (+M02 −M13 −M20 + M31)/4

wR3 = (−M03 −M12 + M21 + M30)/4

wL1 = (−M01 + M10 + M23 −M32)/4

wL2 = (+M02 + M13 −M20 −M31)/4

wL3 = (−M03 + M12 −M21 + M30)/4

M02 = a10(a21a33 − a31a23)

− a11(a20a33 − a30a23)

+ a13(a20a31 − a30a21)

M03 = a10(a21a32 − a31a22)

− a11(a20a32 − a30a22)

+ a12(a20a31 − a30a21)

M12 = a00(a21a33 − a31a23)

− a01(a20a33 − a30a23)

+ a03(a20a31 − a30a21)

M13 = a00(a21a32 − a31a22)

− a01(a20a32 − a30a22)

+ a02(a20a31 − a30a21)

M22 = a00(a11a33 − a31a13)

− a01(a10a33 − a30a13)

+ a03(a10a31 − a30a11)

M23 = a00(a11a32 − a31a12)

− a01(a10a32 − a30a12)

+ a02(a10a31 − a30a11)

M32 = a00(a11a23 − a21a13)

− a01(a10a23 − a20a13)

+ a03(a10a21 − a20a11)

M33 = a00(a11a22 − a21a12)

− a01(a10a22 − a20a12)

+ a02(a10a21 − a20a11)
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table t.3

w0, wM1, wM2, wM3

a11a22a33 = (+h0 − hM1 + hM2 + hM3) · (+h0 + hM1 − hM2 + hM3) · (+h0 + hM1 + hM2 − hM3)

a11a32a23 = (+h0 − hM1 + hM2 + hM3) · (+hR1 − hL1 − hA1 − hZ1) · (−hR1 + hL1 − hA1 − hZ1)

a12a21a33 = (−hR3 + hL3 − hA3 − hZ3) · (+hR3 − hL3 − hA3 − hZ3) · (+h0 + hM1 + hM2 − hM3)

a12a31a23 = (−hR3 + hL3 − hA3 − hZ3) · (−hR2 + hL2 − hA2 − hZ2) · (−hR1 + hL1 − hA1 − hZ1)

a13a21a32 = (+hR2 − hL2 − hA2 − hZ2) · (+hR3 − hL3 − hA3 − hZ3) · (+hR1 − hL1 − hA1 − hZ1)

a13a31a22 = (+hR2 − hL2 − hA2 − hZ2) · (−hR2 + hL2 − hA2 − hZ2) · (+h0 + hM1 − hM2 + hM3)

a00a22a33 = (+h0 − hM1 − hM2 − hM3) · (+h0 + hM1 − hM2 + hM3) · (+h0 + hM1 + hM2 − hM3)

a00a32a23 = (+h0 − hM1 − hM2 − hM3) · (+hR1 − hL1 − hA1 − hZ1) · (−hR1 + hL1 − hA1 − hZ1)

a02a20a33 = (−hR2 − hL2 + hA2 − hZ2) · (+hR2 + hL2 + hA2 − hZ2) · (+h0 + hM1 + hM2 − hM3)

a02a30a23 = (−hR2 − hL2 + hA2 − hZ2) · (+hR3 + hL3 + hA3 − hZ3) · (−hR1 + hL1 − hA1 − hZ1)

a03a20a32 = (−hR3 − hL3 + hA3 − hZ3) · (+hR2 + hL2 + hA2 − hZ2) · (+hR1 − hL1 − hA1 − hZ1)

a03a30a22 = (−hR3 − hL3 + hA3 − hZ3) · (+hR3 + hL3 + hA3 − hZ3) · (+h0 + hM1 − hM2 + hM3)

a00a11a33 = (+h0 − hM1 − hM2 − hM3) · (+h0 − hM1 + hM2 + hM3) · (+h0 + hM1 + hM2 − hM3)

a00a31a13 = (+h0 − hM1 − hM2 − hM3) · (−hR2 + hL2 − hA2 − hZ2) · (+hR2 − hL2 − hA2 − hZ2)

a01a10a33 = (−hR1 − hL1 + hA1 − hZ1) · (+hR1 + hL1 + hA1 − hZ1) · (+h0 + hM1 + hM2 − hM3)

a01a30a13 = (−hR1 − hL1 + hA1 − hZ1) · (+hR3 + hL3 + hA3 − hZ3) · (+hR2 − hL2 − hA2 − hZ2)

a03a10a31 = (−hR3 − hL3 + hA3 − hZ3) · (+hR1 + hL1 + hA1 − hZ1) · (−hR2 + hL2 − hA2 − hZ2)

a03a30a11 = (−hR3 − hL3 + hA3 − hZ3) · (+hR3 + hL3 + hA3 − hZ3) · (+h0 − hM1 + hM2 + hM3)

a00a11a22 = (+h0 − hM1 − hM2 − hM3) · (+h0 − hM1 + hM2 + hM3) · (+h0 + hM1 − hM2 + hM3)

a00a21a12 = (+h0 − hM1 − hM2 − hM3) · (+hR3 − hL3 − hA3 − hZ3) · (−hR3 + hL3 − hA3 − hZ3)

a01a10a22 = (−hR1 − hL1 + hA1 − hZ1) · (+hR1 + hL1 + hA1 − hZ1) · (+h0 + hM1 − hM2 + hM3)

a01a20a12 = (−hR1 − hL1 + hA1 − hZ1) · (+hR2 + hL2 + hA2 − hZ2) · (−hR3 + hL3 − hA3 − hZ3)

a02a10a21 = (−hR2 − hL2 + hA2 − hZ2) · (+hR1 + hL1 + hA1 − hZ1) · (+hR3 − hL3 − hA3 − hZ3)

a02a20a11 = (−hR2 − hL2 + hA2 − hZ2) · (+hR2 + hL2 + hA2 − hZ2) · (+h0 − hM1 + hM2 + hM3)

wR1, wL1, wA1, wZ1

a10a22a33 = (+hR1 + hL1 + hA1 − hZ1) · (+h0 + hM1 − hM2 + hM3) · (+h0 + hM1 + hM2 − hM3)

a10a32a23 = (+hR1 + hL1 + hA1 − hZ1) · (+hR1 − hL1 − hA1 − hZ1) · (−hR1 + hL1 − hA1 − hZ1)

a12a20a33 = (−hR3 + hL3 − hA3 − hZ3) · (+hR2 + hL2 + hA2 − hZ2) · (+h0 + hM1 + hM2 − hM3)

a12a30a23 = (−hR3 + hL3 − hA3 − hZ3) · (+hR3 + hL3 + hA3 − hZ3) · (−hR1 + hL1 − hA1 − hZ1)

a13a20a32 = (+hR2 − hL2 − hA2 − hZ2) · (+hR2 + hL2 + hA2 − hZ2) · (+hR1 − hL1 − hA1 − hZ1)

a13a30a22 = (+hR2 − hL2 − hA2 − hZ2) · (+hR3 + hL3 + hA3 − hZ3) · (+h0 + hM1 − hM2 + hM3)

a01a22a33 = (−hR1 − hL1 + hA1 − hZ1) · (+h0 + hM1 − hM2 + hM3) · (+h0 + hM1 + hM2 − hM3)

a01a32a23 = (−hR1 − hL1 + hA1 − hZ1) · (+hR1 − hL1 − hA1 − hZ1) · (−hR1 + hL1 − hA1 − hZ1)

a02a21a33 = (−hR2 − hL2 + hA2 − hZ2) · (+hR3 − hL3 − hA3 − hZ3) · (+h0 + hM1 + hM2 − hM3)

a02a31a23 = (−hR2 − hL2 + hA2 − hZ2) · (−hR2 + hL2 − hA2 − hZ2) · (−hR1 + hL1 − hA1 − hZ1)

a03a21a32 = (−hR3 − hL3 + hA3 − hZ3) · (+hR3 − hL3 − hA3 − hZ3) · (+hR1 − hL1 − hA1 − hZ1)

a03a31a22 = (−hR3 − hL3 + hA3 − hZ3) · (−hR2 + hL2 − hA2 − hZ2) · (+h0 + hM1 − hM2 + hM3)

a00a11a32 = (+h0 − hM1 − hM2 − hM3) · (+h0 − hM1 + hM2 + hM3) · (+hR1 − hL1 − hA1 − hZ1)

a00a31a12 = (+h0 − hM1 − hM2 − hM3) · (−hR2 + hL2 − hA2 − hZ2) · (−hR3 + hL3 − hA3 − hZ3)

a01a10a32 = (−hR1 − hL1 + hA1 − hZ1) · (+hR1 + hL1 + hA1 − hZ1) · (+hR1 − hL1 − hA1 − hZ1)

a01a30a12 = (−hR1 − hL1 + hA1 − hZ1) · (+hR3 + hL3 + hA3 − hZ3) · (−hR3 + hL3 − hA3 − hZ3)

a02a10a31 = (−hR2 − hL2 + hA2 − hZ2) · (+hR1 + hL1 + hA1 − hZ1) · (−hR2 + hL2 − hA2 − hZ2)

a02a30a11 = (−hR2 − hL2 + hA2 − hZ2) · (+hR3 + hL3 + hA3 − hZ3) · (+h0 − hM1 + hM2 + hM3)

a00a11a23 = (+h0 − hM1 − hM2 − hM3) · (+h0 − hM1 + hM2 + hM3) · (−hR1 + hL1 − hA1 − hZ1)

a00a21a13 = (+h0 − hM1 − hM2 − hM3) · (+hR3 − hL3 − hA3 − hZ3) · (+hR2 − hL2 − hA2 − hZ2)

a01a10a23 = (−hR1 − hL1 + hA1 − hZ1) · (+hR1 + hL1 + hA1 − hZ1) · (−hR1 + hL1 − hA1 − hZ1)

a01a20a13 = (−hR1 − hL1 + hA1 − hZ1) · (+hR2 + hL2 + hA2 − hZ2) · (+hR2 − hL2 − hA2 − hZ2)

a03a10a21 = (−hR3 − hL3 + hA3 − hZ3) · (+hR1 + hL1 + hA1 − hZ1) · (+hR3 − hL3 − hA3 − hZ3)

a03a20a11 = (−hR3 − hL3 + hA3 − hZ3) · (+hR2 + hL2 + hA2 − hZ2) · (+h0 − hM1 + hM2 + hM3)
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table t.3

wR2, wL2, wA2, wZ2

a10a21a33 = (+hR1 + hL1 + hA1 − hZ1) · (+hR3 − hL3 − hA3 − hZ3) · (+h0 + hM1 + hM2 − hM3)

a10a31a23 = (+hR1 + hL1 + hA1 − hZ1) · (−hR2 + hL2 − hA2 − hZ2) · (−hR1 + hL1 − hA1 − hZ1)

a11a20a33 = (+h0 − hM1 + hM2 + hM3) · (+hR2 + hL2 + hA2 − hZ2) · (+h0 + hM1 + hM2 − hM3)

a11a30a23 = (+h0 − hM1 + hM2 + hM3) · (+hR3 + hL3 + hA3 − hZ3) · (−hR1 + hL1 − hA1 − hZ1)

a13a20a31 = (+hR2 − hL2 − hA2 − hZ2) · (+hR2 + hL2 + hA2 − hZ2) · (−hR2 + hL2 − hA2 − hZ2)

a13a30a21 = (+hR2 − hL2 − hA2 − hZ2) · (+hR3 + hL3 + hA3 − hZ3) · (+hR3 − hL3 − hA3 − hZ3)

a00a21a32 = (+h0 − hM1 − hM2 − hM3) · (+hR3 − hL3 − hA3 − hZ3) · (+hR1 − hL1 − hA1 − hZ1)

a00a31a22 = (+h0 − hM1 − hM2 − hM3) · (−hR2 + hL2 − hA2 − hZ2) · (+h0 + hM1 − hM2 + hM3)

a01a20a32 = (−hR1 − hL1 + hA1 − hZ1) · (+hR2 + hL2 + hA2 − hZ2) · (+hR1 − hL1 − hA1 − hZ1)

a01a30a22 = (−hR1 − hL1 + hA1 − hZ1) · (+hR3 + hL3 + hA3 − hZ3) · (+h0 + hM1 − hM2 + hM3)

a02a20a31 = (−hR2 − hL2 + hA2 − hZ2) · (+hR2 + hL2 + hA2 − hZ2) · (−hR2 + hL2 − hA2 − hZ2)

a02a30a21 = (−hR2 − hL2 + hA2 − hZ2) · (+hR3 + hL3 + hA3 − hZ3) · (+hR3 − hL3 − hA3 − hZ3)

a01a12a33 = (−hR1 − hL1 + hA1 − hZ1) · (−hR3 + hL3 − hA3 − hZ3) · (+h0 + hM1 + hM2 − hM3)

a01a32a13 = (−hR1 − hL1 + hA1 − hZ1) · (+hR1 − hL1 − hA1 − hZ1) · (+hR2 − hL2 − hA2 − hZ2)

a02a11a33 = (−hR2 − hL2 + hA2 − hZ2) · (+h0 − hM1 + hM2 + hM3) · (+h0 + hM1 + hM2 − hM3)

a02a31a13 = (−hR2 − hL2 + hA2 − hZ2) · (−hR2 + hL2 − hA2 − hZ2) · (+hR2 − hL2 − hA2 − hZ2)

a03a11a32 = (−hR3 − hL3 + hA3 − hZ3) · (+h0 − hM1 + hM2 + hM3) · (+hR1 − hL1 − hA1 − hZ1)

a03a31a12 = (−hR3 − hL3 + hA3 − hZ3) · (−hR2 + hL2 − hA2 − hZ2) · (−hR3 + hL3 − hA3 − hZ3)

a00a12a23 = (+h0 − hM1 − hM2 − hM3) · (−hR3 + hL3 − hA3 − hZ3) · (−hR1 + hL1 − hA1 − hZ1)

a00a22a13 = (+h0 − hM1 − hM2 − hM3) · (+h0 + hM1 − hM2 + hM3) · (+hR2 − hL2 − hA2 − hZ2)

a02a10a23 = (−hR2 − hL2 + hA2 − hZ2) · (+hR1 + hL1 + hA1 − hZ1) · (−hR1 + hL1 − hA1 − hZ1)

a02a20a13 = (−hR2 − hL2 + hA2 − hZ2) · (+hR2 + hL2 + hA2 − hZ2) · (+hR2 − hL2 − hA2 − hZ2)

a03a10a22 = (−hR3 − hL3 + hA3 − hZ3) · (+hR1 + hL1 + hA1 − hZ1) · (+h0 + hM1 − hM2 + hM3)

a03a20a12 = (−hR3 − hL3 + hA3 − hZ3) · (+hR2 + hL2 + hA2 − hZ2) · (−hR3 + hL3 − hA3 − hZ3)

wR3, wL3, wA3, wZ3

a10a21a32 = (+hR1 + hL1 + hA1 − hZ1) · (+hR3 − hL3 − hA3 − hZ3) · (+hR1 − hL1 − hA1 − hZ1)

a10a31a22 = (+hR1 + hL1 + hA1 − hZ1) · (−hR2 + hL2 − hA2 − hZ2) · (+h0 + hM1 − hM2 + hM3)

a11a20a32 = (+h0 − hM1 + hM2 + hM3) · (+hR2 + hL2 + hA2 − hZ2) · (+hR1 − hL1 − hA1 − hZ1)

a11a30a22 = (+h0 − hM1 + hM2 + hM3) · (+hR3 + hL3 + hA3 − hZ3) · (+h0 + hM1 − hM2 + hM3)

a12a20a31 = (−hR3 + hL3 − hA3 − hZ3) · (+hR2 + hL2 + hA2 − hZ2) · (−hR2 + hL2 − hA2 − hZ2)

a12a30a21 = (−hR3 + hL3 − hA3 − hZ3) · (+hR3 + hL3 + hA3 − hZ3) · (+hR3 − hL3 − hA3 − hZ3)

a00a21a33 = (+h0 − hM1 − hM2 − hM3) · (+hR3 − hL3 − hA3 − hZ3) · (+h0 + hM1 + hM2 − hM3)

a00a31a23 = (+h0 − hM1 − hM2 − hM3) · (−hR2 + hL2 − hA2 − hZ2) · (−hR1 + hL1 − hA1 − hZ1)

a01a20a33 = (−hR1 − hL1 + hA1 − hZ1) · (+hR2 + hL2 + hA2 − hZ2) · (+h0 + hM1 + hM2 − hM3)

a01a30a23 = (−hR1 − hL1 + hA1 − hZ1) · (+hR3 + hL3 + hA3 − hZ3) · (−hR1 + hL1 − hA1 − hZ1)

a03a20a31 = (−hR3 − hL3 + hA3 − hZ3) · (+hR2 + hL2 + hA2 − hZ2) · (−hR2 + hL2 − hA2 − hZ2)

a03a30a21 = (−hR3 − hL3 + hA3 − hZ3) · (+hR3 + hL3 + hA3 − hZ3) · (+hR3 − hL3 − hA3 − hZ3)

a00a12a33 = (+h0 − hM1 − hM2 − hM3) · (−hR3 + hL3 − hA3 − hZ3) · (+h0 + hM1 + hM2 − hM3)

a00a32a13 = (+h0 − hM1 − hM2 − hM3) · (+hR1 − hL1 − hA1 − hZ1) · (+hR2 − hL2 − hA2 − hZ2)

a02a10a33 = (−hR2 − hL2 + hA2 − hZ2) · (+hR1 + hL1 + hA1 − hZ1) · (+h0 + hM1 + hM2 − hM3)

a02a30a13 = (−hR2 − hL2 + hA2 − hZ2) · (+hR3 + hL3 + hA3 − hZ3) · (+hR2 − hL2 − hA2 − hZ2)

a03a10a32 = (−hR3 − hL3 + hA3 − hZ3) · (+hR1 + hL1 + hA1 − hZ1) · (+hR1 − hL1 − hA1 − hZ1)

a03a30a12 = (−hR3 − hL3 + hA3 − hZ3) · (+hR3 + hL3 + hA3 − hZ3) · (−hR3 + hL3 − hA3 − hZ3)

a01a12a23 = (−hR1 − hL1 + hA1 − hZ1) · (−hR3 + hL3 − hA3 − hZ3) · (−hR1 + hL1 − hA1 − hZ1)

a01a22a13 = (−hR1 − hL1 + hA1 − hZ1) · (+h0 + hM1 − hM2 + hM3) · (+hR2 − hL2 − hA2 − hZ2)

a02a11a23 = (−hR2 − hL2 + hA2 − hZ2) · (+h0 − hM1 + hM2 + hM3) · (−hR1 + hL1 − hA1 − hZ1)

a02a21a13 = (−hR2 − hL2 + hA2 − hZ2) · (+hR3 − hL3 − hA3 − hZ3) · (+hR2 − hL2 − hA2 − hZ2)

a03a11a22 = (−hR3 − hL3 + hA3 − hZ3) · (+h0 − hM1 + hM2 + hM3) · (+h0 + hM1 − hM2 + hM3)

a03a21a12 = (−hR3 − hL3 + hA3 − hZ3) · (+hR3 − hL3 − hA3 − hZ3) · (−hR3 + hL3 − hA3 − hZ3)
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table t.3

hexpe number

h = h0 · E + hM1 · IM + hM2 · JM + hM3 · KM

+ hR1 · IR + hL1 · IL + hA1 · IA + hZ1 · IZ

+ hR2 · JR + hL2 · JL + hA2 · JA + hZ2 · IZ

+ hR3 · KR + hL3 · KL + hA3 · KA + hZ3 · KZ

weight factors

w0, wM1, wM2, wM3

w0 = +h3

0 + h0(−h2

M1
− h2

M2
− h2

M3
+ h2

R1
+ h2

R2
+ h2

R3
+ h2

L1
+ h2

L2
+ h2

L3
− h2

A1
− h2

A2
− h2

A3
− h2

Z1
− h2

Z2
− h2

Z3
)

+ 2(−hM1hM2hM3 + hM1hR1hL1 + hM1hA1hZ1 + hM2hR2hL2 + hM2hA2hZ2 + hM3hR3hL3 + hM3hA3hZ3)

+ 2(+hR1hL2hA3 + hR1hL3hZ2 + hR2hL1hZ3 + hR2hL3hA1 + hR3hL1hA2 + hR3hL2hZ1 − hA1hA2hA3 − hZ1hZ2hZ3)

wM1 = +h3

M1
+ hM1(−h2

0 − h2

M2
− h2

M3
+ h2

R1
− h2

R2
− h2

R3
+ h2

L1
− h2

L2
− h2

L3
− h2

A1
+ h2

A2
+ h2

A3
− h2

Z1
+ h2

Z2
+ h2

Z3
)

+ 2(−h0hM2hM3 + h0hR1hL1 + h0hA1hZ1 + hM2hR3hL3 + hM2hA3hZ3 + hM3hR2hL2 + hM3hA2hZ2)

+ 2(+hR1hR2hZ3 + hR1hR3hA2 − hR2hL3hZ1 − hR3hL2hA1 + hL1hL2hA3 + hL1hL3hZ2 + hA1hZ2hZ3 + hA2hA3hZ1)

wM2 = +h3

M2
+ hM2(−h2

M1
− h2

0 − h2

M3
− h2

R1
+ h2

R2
− h2

R3
− h2

L1
+ h2

L2
− h2

L3
+ h2

A1
− h2

A2
+ h2

A3
+ h2

Z1
− h2

Z2
+ h2

Z3
)

+ 2(−h0hM1hM3 + h0hR2hL2 + h0hA2hZ2 + hM1hR3hL3 + hM1hA3hZ3 + hM3hR1hL1 + hM3hA1hZ1)

+ 2(+hR1hR2hA3 − hR1hL3hA2 + hR2hR3hZ1 − hR3hL1hZ2 + hL1hL2hZ3 + hL2hL3hA1 + hA1hA3hZ2 + hA2hZ1hZ3)

wM3 = +h3

M3
+ hM3(−h2

M1
− h2

M2
− h2

0 − h2

R1
− h2

R2
+ h2

R3
− h2

L1
− h2

L2
+ h2

L3
+ h2

A1
+ h2

A2
− h2

A3
+ h2

Z1
+ h2

Z2
− h2

Z3
)

+ 2(−h0hM1hM2 + h0hR3hL3 + h0hA3hZ3 + hM1hR2hL2 + hM1hA2hZ2 + hM2hR1hL1 + hM2hA1hZ1)

+ 2(+hR1hR3hZ2 − hR1hL2hZ3 + hR2hR3hA1 − hR2hL1hA3 + hL1hL3hA2 + hL2hL3hZ1 + hA1hA2hZ3 + hA3hZ1hZ2)

wR1, wL1, wA1, wZ1

wR1 = −h3

R1
+ hR1(−h2

M1
+ h2

M2
+ h2

M3
− h2

0 − h2

R2
− h2

R3
+ h2

L1
+ h2

L2
+ h2

L3
+ h2

A1
+ h2

A2
− h2

A3
+ h2

Z1
− h2

Z2
+ h2

Z3
)

+ 2(−h0hM1hL1 − h0hL2hA3 − h0hL3hZ2 − hM1hR2hZ3 − hM1hR3hA2 − hM2hM3hL1 − hM2hR2hA3)

+ 2(+hM2hL3hA2 − hM3hR3hZ2 + hM3hL2hZ3 − hR2hA1hZ2 − hR3hA3hZ1 + hL1hA1hZ1 − hL2hA1hA2 − hL3hZ1hZ3)

wL1 = −h3

L1
+ hL1(−h2

M1
+ h2

M2
+ h2

M3
+ h2

R1
+ h2

R2
+ h2

R3
− h2

0 − h2

L2
− h2

L3
+ h2

A1
− h2

A2
+ h2

A3
+ h2

Z1
+ h2

Z2
− h2

Z3
)

+ 2(−h0hM1hR1 − h0hR2hZ3 − h0hR3hA2 − hM1hL2hA3 − hM1hL3hZ2 − hM2hM3hR1 + hM2hR3hZ2)

+ 2(−hM2hL2hZ3 + hM3hR2hA3 − hM3hL3hA2 + hR1hA1hZ1 − hR2hZ1hZ2 − hR3hA1hA3 − hL2hA2hZ1 − hL3hA1hZ3)

wA1 = +h3

A1
+ hA1(−h2

M1
+ h2

M2
+ h2

M3
− h2

R1
+ h2

R2
− h2

R3
− h2

L1
− h2

L2
+ h2

L3
− h2

0 − h2

A2
− h2

A3
− h2

Z1
+ h2

Z2
+ h2

Z3
)

+ 2(+h0hM1hZ1 + h0hR2hL3 − h0hA2hA3 − hM1hR3hL2 + hM1hZ2hZ3 + hM2hM3hZ1 + hM2hL2hL3)

+ 2(+hM2hA3hZ2 + hM3hR2hR3 + hM3hA2hZ3 + hR1hR2hZ2 − hR1hL1hZ1 + hR1hL2hA2 + hR3hL1hA3 + hL1hL3hZ3)

wZ1 = +h3

Z1
+ hZ1(−h2

M1
+ h2

M2
+ h2

M3
− h2

R1
− h2

R2
+ h2

R3
− h2

L1
+ h2

L2
− h2

L3
− h2

A1
+ h2

A2
+ h2

A3
− h2

0 − h2

Z2
− h2

Z3
)

+ 2(+h0hM1hA1 + h0hR3hL2 − h0hZ2hZ3 − hM1hR2hL3 + hM1hA2hA3 + hM2hM3hA1 + hM2hR2hR3)

+ 2(+hM2hA2hZ3 + hM3hL2hL3 + hM3hA3hZ2 + hR1hR3hA3 − hR1hL1hA1 + hR1hL3hZ3 + hR2hL1hZ2 + hL1hL2hA2)

⊢page-iv⊣

hexpe inverse

h−1 = (w0 · E + wM1 · IM + wM2 · JM + wM3 · KM

+ wR1 · IR + wL1 · IL + wA1 · IA + wZ1 · IZ

+ wR2 · JR + wL2 · JL + wA2 · JA + wZ2 · IZ

+ wR3 · KR + wL3 · KL + wA3 · KA + wZ3 · KZ)/d
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table t.3

wR2, wL2, wA2, wZ2

wR2 = −h3

R2
+ hR2(+h2

M1
− h2

M2
+ h2

M3
− h2

R1
− h2

0 − h2

R3
+ h2

L1
+ h2

L2
+ h2

L3
− h2

A1
+ h2

A2
+ h2

A3
+ h2

Z1
+ h2

Z2
− h2

Z3
)

+ 2(−h0hM2hL2 − h0hL1hZ3 − h0hL3hA1 − hM1hM3hL2 − hM1hR1hZ3 + hM1hL3hZ1 − hM2hR1hA3)

+ 2(−hM2hR3hZ1 − hM3hR3hA1 + hM3hL1hA3 − hR1hA1hZ2 − hR3hA2hZ3 − hL1hZ1hZ2 + hL2hA2hZ2 − hL3hA2hA3)

wL2 = −h3

L2
+ hL2(+h2

M1
− h2

M2
+ h2

M3
+ h2

R1
+ h2

R2
+ h2

R3
− h2

L1
− h2

0 − h2

L3
+ h2

A1
+ h2

A2
− h2

A3
− h2

Z1
+ h2

Z2
+ h2

Z3
)

+ 2(−h0hM2hR2 − h0hR1hA3 − h0hR3hZ1 − hM1hM3hR2 + hM1hR3hA1 − hM1hL1hA3 − hM2hL1hZ3)

+ 2(−hM2hL3hA1 + hM3hR1hZ3 − hM3hL3hZ1 − hR1hA1hA2 + hR2hA2hZ2 − hR3hZ2hZ3 − hL1hA2hZ1 − hL3hA3hZ2)

wA2 = +h3

A2
+ hA2(+h2

M1
− h2

M2
+ h2

M3
− h2

R1
− h2

R2
+ h2

R3
+ h2

L1
− h2

L2
− h2

L3
− h2

A1
− h2

0 − h2

A3
+ h2

Z1
− h2

Z2
+ h2

Z3
)

+ 2(+h0hM2hZ2 + h0hR3hL1 − h0hA1hA3 + hM1hM3hZ2 + hM1hR1hR3 + hM1hA3hZ1 − hM2hR1hL3)

+ 2(+hM2hZ1hZ3 + hM3hL1hL3 + hM3hA1hZ3 + hR1hL2hA1 + hR2hR3hZ3 − hR2hL2hZ2 + hR2hL3hA3 + hL1hL2hZ1)

wZ2 = +h3

Z2
+ hZ2(+h2

M1
− h2

M2
+ h2

M3
+ h2

R1
− h2

R2
− h2

R3
− h2

L1
− h2

L2
+ h2

L3
+ h2

A1
− h2

A2
+ h2

A3
− h2

Z1
− h2

0 − h2

Z3
)

+ 2(+h0hM2hA2 + h0hR1hL3 − h0hZ1hZ3 + hM1hM3hA2 + hM1hL1hL3 + hM1hA1hZ3 − hM2hR3hL1)

+ 2(+hM2hA1hA3 + hM3hR1hR3 + hM3hA3hZ1 + hR1hR2hA1 + hR2hL1hZ1 − hR2hL2hA2 + hR3hL2hZ3 + hL2hL3hA3)

wR3, wL3, wA3, wZ3

wR3 = −h3

R3
+ hR3(+h2

M1
+ h2

M2
− h2

M3
− h2

R1
− h2

R2
− h2

0 + h2

L1
+ h2

L2
+ h2

L3
+ h2

A1
− h2

A2
+ h2

A3
− h2

Z1
+ h2

Z2
+ h2

Z3
)

+ 2(−h0hM3hL3 − h0hL1hA2 − h0hL2hZ1 − hM1hM2hL3 − hM1hR1hA2 + hM1hL2hA1 − hM2hR2hZ1)

+ 2(+hM2hL1hZ2 − hM3hR1hZ2 − hM3hR2hA1 − hR1hA3hZ1 − hR2hA2hZ3 − hL1hA1hA3 − hL2hZ2hZ3 + hL3hA3hZ3)

wL3 = −h3

L3
+ hL3(+h2

M1
+ h2

M2
− h2

M3
+ h2

R1
+ h2

R2
+ h2

R3
− h2

L1
− h2

L2
− h2

0 − h2

A1
+ h2

A2
+ h2

A3
+ h2

Z1
− h2

Z2
+ h2

Z3
)

+ 2(−h0hM3hR3 − h0hR1hZ2 − h0hR2hA1 − hM1hM2hR3 + hM1hR2hZ1 − hM1hL1hZ2 + hM2hR1hA2)

+ 2(−hM2hL2hA1 − hM3hL1hA2 − hM3hL2hZ1 − hR1hZ1hZ3 − hR2hA2hA3 + hR3hA3hZ3 − hL1hA1hZ3 − hL2hA3hZ2)

wA3 = +h3

A3
+ hA3(+h2

M1
+ h2

M2
− h2

M3
+ h2

R1
− h2

R2
− h2

R3
− h2

L1
+ h2

L2
− h2

L3
− h2

A1
− h2

A2
− h2

0 + h2

Z1
+ h2

Z2
− h2

Z3
)

+ 2(+h0hM3hZ3 + h0hR1hL2 − h0hA1hA2 + hM1hM2hZ3 + hM1hL1hL2 + hM1hA2hZ1 + hM2hR1hR2)

+ 2(+hM2hA1hZ2 − hM3hR2hL1 + hM3hZ1hZ2 + hR1hR3hZ1 + hR2hL3hA2 + hR3hL1hA1 − hR3hL3hZ3 + hL2hL3hZ2)

wZ3 = +h3

Z3
+ hZ3(+h2

M1
+ h2

M2
− h2

M3
− h2

R1
+ h2

R2
− h2

R3
+ h2

L1
− h2

L2
− h2

L3
+ h2

A1
+ h2

A2
− h2

A3
− h2

Z1
− h2

Z2
− h2

0)

+ 2(+h0hM3hA3 + h0hR2hL1 − h0hZ1hZ2 + hM1hM2hA3 + hM1hR1hR2 + hM1hA1hZ2 + hM2hL1hL2)

+ 2(+hM2hA2hZ1 − hM3hR1hL2 + hM3hA1hA2 + hR1hL3hZ1 + hR2hR3hA2 + hR3hL2hZ2 − hR3hL3hA3 + hL1hL3hA1)

determinant

d =

∣

∣

∣

∣

∣

∣

∣

∣

∣

a00 a01 a02 a03

a10 a11 a12 a13

a20 a21 a22 a23

a30 a31 a32 a33

∣

∣

∣

∣

∣

∣

∣

∣

∣

= a00M00 − a01M01 + a02M02 − a03M03

= h0w0 + hM1wM1 + hM2wM2 + hM3wM3 + hA1wA1 + hA2wA2 + hA3wA3 + hZ1wZ1 + hZ2wZ2 + hZ3wZ3

− hR1wR1 − hR2wR2 − hR3wR3 − hL1wL1 − hL2wL2 − hL3wL3

⊢page-v⊣
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table t.4

OCTIVOS product tables

· 1 i j k E I J K -1 -i -j -k -E -I -J -K

1 1 i j k E I J K -1 -i -j -k -E -I -J -K

i i -1 k -j I -E -K J -i 1 -k j -I E K -J

j j -k -1 i J K -E -I -j k 1 -i -J -K E I

k k j -i -1 K -J I -E -k -j i 1 -K J -I E

E -1 -i -j -k -E -I -J -K 1 i j k E I J K

I -i 1 -k j -I E K -J i -1 k -j I -E -K J

J -j k 1 -i -J -K E I j -k -1 i J K -E -I

K -k -j i 1 -K J -I E k j -i -1 K -J I -E

-1 -1 -i -j -k -E -I -J -K 1 i j k E I J K

-i -i 1 -k j -I E K -J i -1 k -j I -E -K J

-j -j k 1 -i -J -K E I j -k -1 i J K -E -I

-k -k -j i 1 -K J -I E k j -i -1 K -J I -E

-E 1 i j k E I J K -1 -i -j -k -E -I -J -K

-I i -1 k -j I -E -K J -i 1 -k j -I E K -J

-J j -k -1 i J K -E -I -j k 1 -i -J -K E I

-K k j -i -1 K -J I -E -k -j i 1 -K J -I E

. . . . . . . . . . . . . . . .

split octivos −→ (A, B)(C, D) = (AC − BHC, AHD − BD)

A, C ∈ HR, B, D ∈ HL

· 1 i j k E I J K -1 -i -j -k -E -I -J -K

1 1 i j k E I J K -1 -i -j -k -E -I -J -K

i i -1 k -j I -E -K J -i 1 -k j -I E K -J

j j -k -1 i J K -E -I -j k 1 -i -J -K E I

k k j -i -1 K -J I -E -k -j i 1 -K J -I E

E E I J K -1 -i -j -k -E -I -J -K 1 i j k

I I -E K -J -i 1 k -j -I E -K J i -1 -k j

J J -K -E I -j -k 1 i -J K E -I j k -1 -i

K K J -I -E -k j -i 1 -K -J I E k -j i -1

-1 -1 -i -j -k -E -I -J -K 1 i j k E I J K

-i -i 1 -k j -I E K -J i -1 k -j I -E -K J

-j -j k 1 -i -J -K E I j -k -1 i J K -E -I

-k -k -j i 1 -K J -I E k j -i -1 K -J I -E

-E -E -I -J -K 1 i j k E I J K -1 -i -j -k

-I -I E -K J i -1 -k j I -E K -J -i 1 k -j

-J -J K E -I j k -1 -i J -K -E I -j -k 1 i

-K -K -J I E k -j i -1 K J -I -E -k j -i 1

. . . . . . . . . . . . . . . .

plain octivos −→ (A, B)(C, D) = (AC − (BD)H , AHD + CHB)

A, C ∈ HR, B, D ∈ HL

The Plain Octivos are closer in spirit to the Cayley-Dickson construction than the Split Octivos.

⊢page-a⊣

Let Hamilton’s quaternion r-h basis be, {1, i, j, k}, and
l-h basis be, {1, I, J, K}, so that, ij = +k, ..., IJ = −K, ...,
etc.. then re-define the letters by the ordered pairs,

1 = (1, 0), i = (i, 0), j = (j, 0), k = (k, 0)

E = (0, 1), I = (0, I), J = (0, J), K = (0, K)

etc.. then, for example, since, iH = I ,

iJ = (i, 0)(0, J) = (0, IJ) = (0,−K) = −K

Then, for the Split Octivos, the r-h,

and l-h form separate algebras.

(A, 0)(C, 0) = +(AC, 0) r-h×r-h=r-h

(0, B)(0, D) = −(0, BD) l-h×l-h=l-h

while also providing an interpretation for

a product of right hand with left hand.

(A, 0)(0, D) = (0, AHD) r-h×l-h=l-h

(0, B)(C, 0) = (−BHC, 0) l-h×r-h=r-h

Let AR = (A, 0) and DL = p(0, D),

where p2 = −1, and p commutes with all

numbers like a scalar. Then, note that,

ARDL 6= DLAR, AR ∈ HR, DL ∈ H̆L

Right and left quaternions do not commute here, the
way they do in the hexpe algebra. Also, our l-h is a

little different from usual, HL, since, H̆L, doesn’t share
scalars with the r-h algebra, HR. They are truly split.

There are two left identity elements,

{1,−E}, and no right identities. Every

column has a 1 or −E, but not both. So,

every element has an inverse to 1 or −E.

The Plain Octivos have a single identity,

which is both a left and a right identity,

but the r-h and l-h are now fully

integrated into the Octivo algebra and

can no longer be separated. The ordered

pair, (A, 0), can be identified with, HR.

But, (0, D) is now so different from D

that it loses its special l-h character.

It is no longer simply proportional to an

element of HL. (0, B) · (0, D) ∈ HR !

However, the squares of the basis elements now

have the values, +1 or −1, instead of the four

values found in Split Octivos.
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table t.4

OCTIVOS . product tables

· 1 i j k E I J K -1 -i -j -k -E -I -J -K

1 1 i j k E I J K -1 -i -j -k -E -I -J -K

i i -1 k -j -I E K -J -i 1 -k j I -E -K J

j j -k -1 i -J -K E I -j k 1 -i J K -E -I

k k j -i -1 -K J -I E -k -j i 1 K -J I -E

E E I J K -1 -i -j -k -E -I -J -K 1 i j k

I I -E K -J i -1 -k j -I E -K J -i 1 k -j

J J -K -E I j k -1 -i -J K E -I -j -k 1 i

K K J -I -E k -j i -1 -K -J I E -k j -i 1

-1 -1 -i -j -k -E -I -J -K 1 i j k E I J K

-i -i 1 -k j I -E -K J i -1 k -j -I E K -J

-j -j k 1 -i J K -E -I j -k -1 i -J -K E I

-k -k -j i 1 K -J I -E k j -i -1 -K J -I E

-E -E -I -J -K 1 i j k E I J K -1 -i -j -k

-I -I E -K J -i 1 k -j I -E K -J i -1 -k j

-J -J K E -I -j -k 1 i J -K -E I j k -1 -i

-K -K -J I E -k j -i 1 K J -I -E k -j i -1

. . . . . . . . . . . . . . . .

conjugated octivos −→ (A, B)(C, D) = (AC − (B∗D)H , (A∗)HD + CHB)

A, C ∈ HR, B, D ∈ HL

· 1 i j k E I J K -1 -i -j -k -E -I -J -K

1 1 i j k E I J K -1 -i -j -k -E -I -J -K

i i -1 k -j -I E -K J -i 1 -k j I -E K -J

j j -k -1 i -J K E -I -j k 1 -i J -K -E I

k k j -i -1 -K -J I E -k -j i 1 K J -I -E

E E I J K -1 -i -j -k -E -I -J -K 1 i j k

I I -E -K J i -1 -k j -I E K -J -i 1 k -j

J J K -E -I j k -1 -i -J -K E I -j -k 1 i

K K -J I -E k -j i -1 -K J -I E -k j -i 1

-1 -1 -i -j -k -E -I -J -K 1 i j k E I J K

-i -i 1 -k j I -E K -J i -1 k -j -I E -K J

-j -j k 1 -i J -K -E I j -k -1 i -J K E -I

-k -k -j i 1 K J -I -E k j -i -1 -K -J I E

-E -E -I -J -K 1 i j k E I J K -1 -i -j -k

-I -I E K -J -i 1 k -j I -E -K J i -1 -k j

-J -J -K E I -j -k 1 i J K -E -I j k -1 -i

-K -K J -I E -k j -i 1 K -J I -E k -j i -1

. . . . . . . . . . . . . . . .

octonions (octaves) −→ (A, B)(C, D) = (AC − DB∗, A∗D + CB)

A, B, C, D ∈ HR
=or=
isomorph octivos −→ (A, B)(C, D) = (AC − (D∗B)H , D∗AH + CHB)

A, C ∈ HR, B, D ∈ HL

⊢page-b⊣

The Conjugated Octivos make use of both the hand
transformation operator and conjugation in a Cayley-
Dickson type construction.

Here the squares of all the imaginary

elements are −1, like complex numbers,

quaternions, and octonions. The unique

identity exists, and every element has an

unique inverse. Once again, the l-h is

fully integrated with the r-h in this

Octivo system, and (0, D) can’t be treated

like a proportional member of HL, even

though D ∈ HL.

For the Octonions, we use only Hamilton r-h

basis ij = +k, ..., etc.. and define the labels,

1 = (1, 0), i = (i, 0), j = (j, 0), k = (k, 0),

E = (0, 1), I = (0, i), J = (0, j), K = (0, k).

Here the ordered pairs are built from two r-h

quaternion systems.

Then, with a small modification to the

conjugated octivos we obtain a Cayley-

Dickson type construction that creates an

algebra with the same product table as the

octonions, yet are constructed with a pair

of r-h and l-h quaternions, instead

of the usual two right hands. We call this

new algebra “isomorph octivos”.

Given that Hexadecanions (sedenions) are

constructed from a pair of octonions, and

we now have isomorph octivos that are

essentially equivalent in form, we can

construct another 16-dimensional algebra

isomorphic to the hexadecanions, using

two r-h and two l-h quaternions instead.
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[2] In his “Lectures on Quaternions” Dublin 1853, pp.61-65,
Hamilton describes the movements of a telescope using
his new ijk elements. Here south is +i, west is +j, and
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things clearer than the sometimes confusing symbol 1.
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1, commutes with every other number, and leaves that
number unchanged, i.e. EZ = ZE = Z, regardless of
what Z is given.

[5] That is to say, when we fix R before L, then we have
cyclic, IA = JRKL, and acyclic, IZ = KRJL. But, if
we fix L before R, we have the reverse situation, with
acyclic, IA = KLJR, and now cyclic, IZ = JLKR. Right
hand elements commute with left hand elements, so we
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[8] The R-H and L-H quaternion algebras are distinct by
virtue of the handedness property ijk = ±1, but are
otherwise isomorphic to each other. While, the M-H, A-H,
Z-H algebras have no such distinguishing characteristic to
differentiate them at all, and are therefore more identical.

[9] We either consider the five–R,L,M,A,Z—4-d numbers, or
alternatively consider the algebras from the five groups
of order eight, to suggest this naming convention.

[10] Well, hexadecapentaquaternions was just a little too
long, so we had to shorten it to hexpentaquaternions,
then to hexpe.

[11] Hamilton called this term, h2

0+h2

R1+h2

R2+h2

R3, the ‘norm’
of the quaternion. But sometimes mathematicians define
the ‘norm’ to be the square-root of this same expression.
So, we shall use the term ‘square norm’ to emphasize
we’re talking about the sum-of-squares when referring to
this type of factor.

[12] h′†
M = (w0E + w1IM + w2JM + w3KM ) /
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N4

M

�3/4

[13] W. M. Petrie, “The Pyramids and Temples of

Gizeh”(1883)—online: (see Ch 6. Sec.24. for base angles)
http://www.ronaldbirdsall.com/gizeh/

[14] It may also be interesting to note that, 5 × 73 = 365,
and that, 4 × 73 = 292, which is the 5-th element of the
continued fraction in pi = {3; 7, 15, 1, 292, 1, ...}.

[15] It is to be understood here that, Z′ ·Y = Y ·Z, expresses

the condition that there is a fixed Z′, counterpart to a
given Z, that makes this equation true for all Y in the
algebra under consideration.

[16] Let the square’s vertices be labeled 1-2-3-4 in clockwise
order, and let R90, R180, R270, all represent clockwise
rotations. The lines of reflection, D13, D24, B12, B23,
are fixed in the plane of the square to the initial square’s
placement and don’t move around with the vertices of
the square. Then, the left column element of the product
table, e.g. R90, represents the first operation, and the top
row the second element, e.g. D13, in the binary product,
e.g. R90 · D13 = B23.

[17] This is the Schönflies notation convention used mostly
by biochemists and spectroscopists. Mathematicians of-
ten use Zn for the cyclic group, rather than Cn, and
with the exception of the symmetric group symbol, Sn,
used in mathematical literature, most of the biochemist
symbols are also adopted by mathematicians. The alter-
native crystallographic Hermann-Mauguin nomenclature
used to identify groups is also found in math papers.

[18] This also causes parallel lines to converge. A projection
that maps 3-d objects onto the plane while preserving
parallel lines is an “orthographic projection.”

[19] W. R. Hamilton, June 1845, BAAS.
[20] The space inversion described by the Parity operator,

P : (x, y, z) 7→ (−x,−y,−z), is equivalent to a reflection
in the yz-plane, IX : (x, y, z) 7→ (−x, y, z), followed by
a 180◦ rotation about the x-axis normal to that plane,
RX(180) : (x, y, z) 7→ (x,−y,−z), i.e.
P ≡ IXRX(180) ≡ IY RY (180) ≡ IZRZ(180).
So, Parity combines a plane mirror with a half turn.

[21] Lord Kelvin (William Thomson), Baltimore Lectures on
Molecular Dynamics and The Wave Theory of Light,
1884.

[22] McAulay, Alexander, Utility of Quaternions in Physics,
London: Macmillan and Co., xiv + 107pp, 1893.;

[23] P. M. Jack, “Physical Space as a Quaternion Structure:
Maxwell’s Equations. A Brief Note”,
http://www.arxiv.org/abs/math-ph/0307038

[24] Given particular boundary conditions, we can then use
integral transforms to convert this equation to an ordi-
nary matrix equation, solve with matrix algebra or hexpe
algebra, then take the inverse integral transform to get
the result.

[25] Note 5 elements {e, iR, jR, iL, jL} generate this algebra,
since, kR, kL, can also be considered “defined” by these,
and hence rules involving k’s are also “derived” rules.

[26] Summation over the repeated indices, p, q, r, s, is implied.
Every hexpe number, h, can be written as the sum of rl
pairs , h = P11pQ′

p11 = P11,1Q
′
1,11 + P11,2Q

′
2,11 + . . . +

P11,mQ′
m,11, where the Ps are r-h, and Q’s l-h.

[27] Hamilton describes his struggles searching for triplets in
“Lectures on Quaternions”, p.16, he first starts looking
for triplets in 1833, after he’d invented “doublets”, which
are ordered pairs (x, y) equivalent to complex numbers
x + iy, and first publically mentions his triplet attempts
at the end of an 1835 Essay. It then takes him until 1843
before he obtains his remarkable insight that the 4th pa-
rameter is essential.

[28] Also called sedenions.
[29] An alternate Cayley-Dickson construction definition is,

http://historical.library.cornell.edu/cgi-bin/cul.math/docviewer?did=05230001&seq=9
http://www.ronaldbirdsall.com/gizeh/
http://www.arxiv.org/abs/math-ph/0307038
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(A,B)(C, D) = (AC − D∗B, BC∗ + DA). There’s also a
more modern “Conway-Smith process” defined by,
(A,B)(C, D) = (AC − (B∗D)∗, BC∗ + B(A∗(B−1D)∗)∗)
(A,B)(C, D) = (AC − (B∗D)∗, BC∗ + (A∗D∗)∗)
1st definition used when B 6= 0, and the 2nd if B = 0.

[30] In fact all associative algebras can be represented by ma-
trix algebra. However, the hexpe algebra is equivalent
to the complete matrix algebra of 4×4 matrices, it is not
a subalgebra of the matrix algebra. It is just a particular
hypercomplex decomposition of that matrix algebra.

[31] Recall that left hand quaternions are “isomorphic”
to right hand quaternions. This question can then be
generalized—is there a way to use isomorphic lower di-
mensional algebras in the construction of the higher di-
mensional one, with a Cayley-Dickson type construction,
instead of requiring the lower algebras be identical?

[32] The names “octonions” and “octaves” being already
taken, we’ve settled on “octivos” to call the whole class
of 8-d numbers that can be formed from a doublet prod-
uct using a pair of “right and left” quaternions; this in-
cludes other constructions, not mentioned here in this
paper. The versions mentioned here may then be referred
to by the terms: (1) “split octivos,” since (A,0) and
(0,B) form separate r-h and l-h quaternion algebras, but
there are effectively two identity elements; (2) “plain
octivos,” since only the hand operator is used in the
formula; (3) “conjugated octivos,” since both the con-
jugation and hand transformation are used in construc-
tion; (4) “isomorph octivos,” since this construction is
isomorphic to the octonions.
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We introduce a modified product that enables matrix representations of octonions and all other
Cayley-Dickson algebras, and discuss a new dual-product matrix algebra called quatro-quaternions.

I. INTRODUCTION.

The reals, complex numbers, and quaternions, can be represented by matrix algebra. But, since the standard
matrix algebra has an associative multiplication it cannot normally represent the octonions. However, with a simple
modification to the definition of the matrix product one can also represent octonions. Matrices can be extended to
include both an “associative product” and a “non-associative product,” resulting in a more flexible matrix algebra
capable of representing all the normed division algebras, and indeed all Cayley-Dickson algebras as well. Consider
the following two alternative expressions for 2× 2 matrix multiplication.

(

A00 A01

A10 A11

)

·

(

B00 B01

B10 B11

)

=

(

A00B00 + A01B10 A00B01 + A01B11

A10B00 + A11B10 A10B01 + A11B11

)

(1)

(

A00 A01

A10 A11

)

×

(

B00 B01

B10 B11

)

=

(

A00B00 + B10A01 B01A00 + A01B11

B00A10 + A11B10 A10B01 + B11A11

)

(2)

When the multiplication of the matrix entries commute, A01B10 = B10A01 etc., there is no difference between these
two expressions. But, when these entries non-commute, A01B10 6= B10A01, the results of the two formulas are generally
different. When the A’s and B’s are quaternions, therefore, the two formulas give different results, the first being the
usual form for matrix multiplication, but the second formula enables us to represent octonions by using 2×2 matrices
over the quaternions. An octonion can then be written as the 2× 2 matrix with the special form,

o =

(

A −B∗

B A∗

)

(3)

where the A∗ and B∗ are quaternion conjugates of the corresponding A and B quaternions. The octonions have 8
degrees of freedom, and are thus a subset of that more general number represented by the 2×2 matrices of quaternion
entries. These special hexadecanions, which include the multiplication formula (2), we shall call “quatro-quaternions.”

r(A, B) = A ·B
l(A, B) = B · A

Since quaternion products non-commute, this means that we have to discriminate between right and left actions
when considering products. Such consideration is not necessary for reals and complex numbers, but for quaternions
the issue becomes important. The concepts of right and left are relative to each other. But, if, for a right-action
product, we write, r(A, B) = A · B, then there is always a related product, l(A, B) = B · A, which is left-action.
Our two matrix product formulas are then distinguished by the way in which they combine these right and left actions.

(

r+r r+r
r+r r+r

) (

r+l l+r
l+r r+l

)

In the standard matrix product all the matrix entries are, r+r, that is, they are formed by summing right action
products of quaternions. While, in the new special matrix product, there is a balance, r+l, between right and left
actions in the sum. This latter combination alternates between r+l and l+r on moving to the next column or row.

∗Alumnus of the Physics Department of Columbia University, NY.
†Electronic address: math@hypercomplex.com
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When the matrix entries have products that associate and commute, both these matrix products, · and ×, also
associate, and indeed produce the same results. But, when the matrix entries have products that non-commute,
these matrix product operators become distinct; the · remains “associative,” but the × is now “non-associative.”

Here the commutativity of the underlying number system determines the associativity of the higher order
number system erected over those underlying numbers. This concept of the “ non-associative product ” can be
extended to matrices of all orders, by replacing the usual right-action summations, r+r+r+... , with appropriate
balanced alternating right and left corresponding sums, like r+l+r+... . But, for the moment, our interest is
in 2 × 2 matrices. Even though the second type of matrix product is only non-associative when the underlying is
non-commutative, we shall still generally refer to this type of product as the non-associative product, to distinguish
the form from the standard product. A better name might be the “ interleaved product, ” since the right and left
actions are really being interleaved, or interweaved, in the summation. Other names might be twisted product, string

product, chain product, braided product, and so on, given that the alternating form of the right and left actions weave
in and out like the twisted action found in the braiding of a string, rope, or chain, since the form of the summation
goes like A · B + B · A + A · B + B · A + ... etc. The name we establish for this type of product should be unique
from other names already being used for different mathematical concepts, so we provide these various suggestions.
However, we shall often find the name “ twisted product ” very convenient, as we shall see elsewhere in this paper.
Our general matrix algebra then, now has two types of multiplications, one associative and one non-associative.
When we restrict the product to type one—the standard multiplication—we have M(2, H), which we also write,
M[·](2, H), the standard algebra of 2× 2 matrices over Hamilton’s quaternions. When we restrict the product to type

two—the new multiplication—we have “restricted quatro-quaternions,” which we symbolize, M[×](2, H), and which
is also a 2 × 2 matrix algebra over Hamilton’s quaternions, except with the new special product definition replacing
the standard matrix product. Octonions are then a natural subalgebra of these restricted quatro-quaternions,
O ⊂M[×](2, H), and also, H ⊂M[×](2, C), and C ⊂M[×](2, R), but there being no significant difference between the
choice of product, · or ×, in these latter two cases, we can just continue to write, H ⊂ M(2, C), and C ⊂ M(2, R),
as usual. Without these restrictions, we have an entirely new type of matrix algebra with three essential operators
{+, ·,×}, one addition and two multiplications, which we call “quatro-quaternions,” symbolized by QQ ≡M[·,×](2, H).

Defining such an interleaved product is simpler for 2×2 matrices than n×n. However, even with just 2×2 matrices
to deal with, once we recognise that combinations of right and left actions empower us to extend the matrix algebra to
get greater flexibility in algebraic representations, we find we still have very many alternative ways to do this. Since
there are 4 matrix entries, each formed from the sum of 2 quaternion pair products, like r+r, or r+l, and there are
thus 8 terms within a matrix product that can take the r or l form for the action, we have 28 = 256 ways to define a
matrix product. So, technically, we could construct 256 different matrix algebras, each based on one of these particular
choices for product. The standard matrix product uses up one of these possibilities, where all the actions are r.
But, that still leaves 255 alternative forms for us to choose from in defining our alternate product. The extension we
chose is inspired by the Cayley-Dickson construction. So, it is probably appropriate to review this construction here.
There are two general ways to define the Cayley-Dickson construction, but they both lead to the same essential results.

cayley-dickson (i) : (A, B)∗ ≡ (A∗,−B)

(A, B)(C, D) = (AC −DB∗, A∗D + CB) (4)

o =

(

A −B∗

B A∗

)

o∗ =

(

A∗ B∗

−B A

)

(5)

cayley-dickson (ii) : (A, B)∗ ≡ (A∗,−B)

(A, B)(C, D) = (AC −D∗B, DA + BC∗) (6)

o =

(

A B
−B∗ A∗

)

o∗ =

(

A∗ −B
B∗ A

)

(7)

They derive from setting, (A, B) = A + iB, with an i prefix, and, (A, B) = A + Bi, with an i postfix, respectively.
The higher dimensional algebra can also be represented by 2 × 2 matrices over the next lower dimensional algebra,
using a pair of elements from that lower algebra as shown in (5) and (7). When A, B are reals, o is a complex
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number. When A, B are complex numbers, o is a quaternion. And when A, B are quaternions, o is an octonion,
provided we use the non-standard matrix product defined in (2). Apart from this last case, it doesn’t matter which
matrix product we use, (1) or (2), both give us the same way to represent complex numbers or quaternions by 2× 2
matrices. Our new interleaved product works with either form of the Cayley-Dickson construction. Note, however,
that the 2×2 matrix definitions of the o’s are transposed when changing construction from (4) to (6). It is instructive
to follow the inductive steps that lead to these two forms for the Cayley-Dickson construction.

Using (A, B) = A + iB,

(A, B)(C, D) = (A + iB)(C + iD) (8)

= AC + iBiD + AiD + iBC (9)

= AC + i2B∗D + iA∗D + iBC (10)

= (AC −B∗D) + i(A∗D + BC) (11)

= (AC −B∗D, A∗D + BC) (12)

≈ ( r− r , r + r ) (13)

... twisted into ...

= (AC −DB∗, A∗D + CB) (14)

≈ ( r− l , r + l ) (15)

Using (A, B) = A + Bi,

(A, B)(C, D) = (A + Bi)(C + Di) (16)

= AC + BiDi + ADi + BiC (17)

= AC + BD∗i2 + ADi + BC∗i (18)

= (AC −BD∗) + (AD + BC∗)i (19)

= (AC −BD∗, AD + BC∗) (20)

≈ ( r− r , r + r ) (21)

... twisted into ...

= (AC −D∗B, DA + BC∗) (22)

≈ ( r− l , l + r ) (23)

We arrive at the idea of the Cayley-Dickson construction by observing how the introduction of a new imaginary
element, i, into an already existing hypercomplex number, induces the doubling of the dimension. Then following
Hamilton’s method of the algebra of couples, we represent this double number by an ordered pair, (A, B), which
allows us to emphasize this doubling without making explicit reference to a new imaginary element, like, i, indeed
without making any reference to imaginary quantities at all, since all numbers are ultimately built from pairs of reals.

Starting with real numbers, we double them up by introducing our first imaginary, (A, B) = A+ iB. Multiplication
is then written, (A, B)(C, D) = (A+iB)(C+iD) = AC+iBiD+AiD+iBC. Our imaginary element, i, commutes and
associates with the reals under multiplication, and, i2 = −1, by definition, so we get (AC −BD, AD + BC), and the
conjugate of our complex number is (A, B)∗ = (A,−B). When we double these complex numbers, we have one type of
modification to make to this product formula. Our new imaginary, i, is orthogonal to the existing imaginary element
that defines the complex number, and anticommutes with the old imaginary element, by definition, and for every
complex number, A, the new i conjugates the parameter when we commute the variables, i.e. Ai = iA∗, iA = A∗i.
So, we have to introduce a modification to account for this conjugation, and the steps above show how we obtain two
forms (12) or (20) depending on whether we use the form A + iB or A + Bi to derive our ordered couple formula.
The conjugate of the new double number now becomes, (A, B)∗ = (A∗,−B). The introduction of the conjugation ∗

in appropriate places, is the only modification we need to make, and since real numbers are self-conjugate, the new
formulas are valid for constructing complex numbers from reals, as well as constructing quaternions from complex
numbers. But now, when we come to double the quaternions to obtain our octonions, there’s one new modification
we have to make to obtain the correct formulas. Since quaternions don’t commute under multiplication, we have to
discriminate between right and left action products, r(A, B) = AB and l(A, B) = BA. The order of the factors
is now an important consideration, and they happen not to be in proper order here, but a simple twisting does the trick.
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Why do we need to twist?

(P1): N(a) = |A|2 + |B|2 = |a|2 ≥ 0. a = (A, B)
(P2): N(a) = a · a∗ = a∗ · a. b = (C, D)
(P3): N(a)N(b) = N(ab).

We’d like our algebra to have a “norm”, N( · ), with as many of the usual properties exhibited by the previous
algebras as possible. First, we’d like there to exist a formula, so that for each number, a, in our algebra, N(a)
produces a positive real value for non-zero a numbers, vanishing only when the number a itself vanishes, which we
can therefore always write, N(a) = |a|2. Then, we’d like this norm formula to be constructed using all the component
parts of the number a, so that it can be indeed constructed to vanish only when a itself vanishes. We’d like this
formula to be the “sum of squares” of the component parts of the number a, so that, if, a = (A, B), we may write,
N(a) = |A|2 + |B|2. And, given that these parts, A and B, are themselves from such normed algebras of lower
dimension, the norm can be ultimately expanded into the “sum of n squares” of the real components in the n-tuple,
a = (a0, a1, . . . , an−1), N(a) = a2

0 + a2
1 + . . . + a2

n−1, thus covering all the degrees of freedom in the n-dimensional
a-number. With this alone established, we’ll refer to the construction as a property (P1) norm. We might be
interested in what transformations on our a-numbers keep this norm invariant. In which case, it’s simply a “metric”
that describes some geometric feature of the algebra. Second, we’d like to be able to construct multiplicative inverses
for the a numbers using the norm—after all, it would be nice to actually be able to do something algebraically with our
norm, instead of just using it to paint pretty geometric pictures. The usual way to exploit the norm is in its natural
link to the concept of the conjugate exhibited in the lower dimensional algebras. So, first we must require our algebra
have such an operation as conjugation, and that conjugation must have certain nice properties. One convention is to
define an algebra, A, to be a ∗-algebra, if there’s a real-linear map, ∗ : A 7→ A, i.e. (λa + λb)∗ = λa∗ + λb∗, λ ∈ R,
which obeys the two rules, (a∗)∗ = a , (ab)∗ = b∗a∗ , ∀ a, b,∈ A . If, additionally, ∀ a ∈ A : a + a∗, a · a∗, a∗ · a ∈ R ,
and also, ∀ a 6= 0 : a · a∗ = a∗ · a > 0 , then we can define a norm, |a|2 = a · a∗ = a∗ · a, and now use it to construct
the multiplicative inverse, a−1 = a∗/|a|2, so the standard practice is to then call this ∗-algebra nicely-normed and
be content we got this far. With this established, therefore, we’ll refer to the construction as a property (P2) norm.
Now we can use our norm formula to construct inverses. Third, we’d like the product of norms from two different
numbers to equal the norm of their product. This is usually accomplished through the “law of the squares” which
tells us that the product of two sums of n squares is a sum of n squares, and is a particularly useful feature, e.g. com-
bined with (P2) we could write, (ab)−1 = b−1a−1. With this established, we’ll refer to the construction as a (P3) norm.

Now, it’s a simple matter to construct a (P1) norm. We just declare that, for any number, a = (A, B), we define,
N(a) = |A|2 + |B|2, using the properties of the previous norms to establish our norm. But, now we’d like our norm to
satisfy the (P2) property. We know that the formula for the conjugate is, a∗ = (A∗,−B), from the previous quaternion
construction, and so we start with this definition also for our octonion conjugate, not knowing yet what, if anything,
needs modification. Then, using the expression (12) for the product, we test the (P2) property,

N(a) = (A, B) · (A, B)∗ = (A, B) · (A∗,−B) = (AA∗ −B∗(−B), A∗(−B) + BA∗) (24)

= ( |A|2 + |B|2 , −A∗B + BA∗ ) (25)

so we try...

(A, B) · (C, D) = (AC −B∗D, A∗D + CB) (26)

and we notice that we can obtain the norm property, by keeping the previous definition of the conjugate, if we get the
terms on the right side of the resultant ordered couple to cancel out. This can be accomplished by reversing factors
in either pair product, A∗D or BC, in the right half of the couple in definition (12). We must twist one of these
terms, but not both simultaneously. The relative order is what matters. Either one we pick will give us the results we
seek. Say then, we replace BC with CB. Then, our product definition (12) is replaced by (26), and result (25) be-
comes, N(a) = (|A|2+|B|2)·(1, 0) = |A|2+|B|2, where we identify the ordered couple, (1, 0), with the real scalar unit 1.

Since we’d like our octonions to satisfy (P3) also, we start with this new twisted product (26) and test the property,

N(ab) = (AC −B∗D, A∗D + CB) · (AC −B∗D, A∗D + CB)∗

= ( (|A|2 + |B|2)(|C|2 + |D|2)− 2.S(ACD∗B) + 2.S(D∗ACB) , 0 ) (27)

Unfortunately, although we find the right result, N(a)N(b), in part of this expression, we also have another part
that messes things up. The notation, S( · ), refers to the scalar part of the quaternion. We may cyclically permute
the quaternion factors within when taking the scalar, so, S(D∗ACB) =S(ACBD∗), for example, but this is the clos-
est we can get to the other term, S(ACD∗B). We still differ by, BD∗ verses D∗B. The solution is to effect a another twist.
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In order to get the most useful normed algebra, we have to alter the order of the factors in two of the terms. This
means that some right action products are replaced by their corresponding left action products. All products are not
changed, just one term in the sum on each side of the ordered couple. This thus results in a twisted product formula for
the Cayley-Dickson construction, where sums of right action products, like r-r and r+r, are replaced by sums that
balance right and left actions, like r-l and r+l or l+r. This is the very twisting action required in the modification
of the matrix product, in order to enable the matrix algebra to also represent octonions in terms of 2×2 matrices over
the quaternions. Note that this twisting modification has no effect on the previous hypercomplex numbers, since reals
and complex numbers commute. The issue only becomes important when doubling the quaternions to get octonions.
So, the new twisted product formulas work just as well for the lower dimensional numbers where right and left actions
are indistinguishable from one another. The Cayley-Dickson construction is typically fixed at this final conjugated
and twisted formula, i.e. (14) or (22), since no obvious advantage is obtained by further modifications[1], there being
only four normed division algebras. Beyond the octonions, one can still continue to double the numbers using this final
formula. The Cayley-Dickson algebras that result are all nicely normed and power associative, but are not division
algebras, not associative, nor alternative, and, of course, they don’t commute. One can, however, continue to use the
new matrix product to represent these Cayley-Dickson algebras by a matrix algebra.

II. QUATRO-QUATERNIONS.

While any Cayley-Dickson algebra can be represented by 2 × 2 matrices over the previous algebra, with this new
non-associative matrix product, actual calculation with the new 2×2 matrix representation is non-trivial. Since we’ve
changed the very definition of the product, we need to re-construct the formula for the multiplicative inverse of a
matrix implied by this new twisted product. In the case of quatro-quaternions, at least, we can do this easily, using
our knowledge of two-hand quaternions. Consider the following matrix equation,

(

A00 A01

A10 A11

)

×

(

B00 B01

B10 B11

)

=

(

1 0
0 1

)

(28)

If the As and Bs are right-hand quaternions, then our special twisted product formula (2) gives us two sets of systems
of linear quaternion equations to solve.

A00B00 + B10A01 = 1 B01A00 + A01B11 = 0 (29)

B00A10 + A11B10 = 0 A10B01 + B11A11 = 1

A special method to solve these quaternion systems is described in detail in a previous paper [PJ2] [2−]. Essentially,
we can move the known factors over to the other side of the unknowns, by converting right-handed quaternion factors
into their left-handed quaternion forms. If, therefore, we take the matrix with the As to be the known parameters,
and the matrix with the Bs to be the unknowns, we can move those As that stand on the r-h-s of the Bs, over to the
l-h-s, by changing the moving As into left-hand quaternions, which we indicate here with the ′ mark, e.g. A01 7→ A′

01,
and simultaneously, we mark the unknowns with a caretˆto indicate which parameters are being used as pivots, e.g.
B10 7→ B̂10. This allows us to arrange all the knowns on one side of the unknowns.

A00B̂00 + A′
01B̂10 = 1̂ A′

00B̂01 + A01B̂11 = 0̂ (30)

A′
10B̂00 + A11B̂10 = 0̂ A10B̂01 + A′

11B̂11 = 1̂

In effect, we have “ un-twisted ” the product formulas, by making use of the two-hand quaternion algebra techniques.
Non-abelian algebra presents us with many such twisted product forms that make manipulation difficult. But,
fortunately, when dealing with quaternions, we have these special methods to un-twist the expressions, which then
allow us to work with the forms as if we’re dealing with a familiar abelian algebra. Then, using the fact that left-handed
quaternions commute with right-handed quaternions, the usual methods of re-arrangement allow these equations to
be re-written as follows, each in terms of one unknown variable.

A11A00B̂00 −A′
01A

′
10B̂00 = A111̂ A01A10B̂01 −A′

11A
′
00B̂01 = A011̂ (31)

A′
10A

′
01B̂10 −A00A11B̂10 = A′

101̂ A′
00A

′
11B̂11 −A10A01B̂11 = A′

001̂

The solution to the matrix with the Bs is then given by the four parameter results[2];

B̂00 =
A111̂

⊢ (A11A00 −A′
01A

′
10)

B̂01 =
A011̂

⊢ (A01A10 −A′
11A

′
00)

(32)

B̂10 =
A′

101̂

⊢ (A′
10A

′
01 −A00A11)

B̂11 =
A′

001̂

⊢ (A′
00A

′
11 −A10A01)

http://www.hypercomplex.com/research/emgrav/hypcx-20060129a.pdf
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The formulas in (32) make use of the hand changing operator ′ , which has some similarities to the more familiar
conjugation operator ∗ . For example, like (AB)∗ = B∗A∗, the hand change obeys a similar rule, (AB)′ = B′A′, in
that the factors are reversed in the product when removing the parenthesis; and like, (A∗)∗ = A, we have, (A′)′ = A.
We could use this, for example, to write (A′

00A
′
11 −A10A01) = (A11A00 −A′

01A
′
10)

′, etc., and thus show that the four
dividing factors in the expressions for the Bs are really just two different factors and their hand-changed versions, i.e.,

(

B̂00 B̂01

B̂10 B̂11

)

=









A111̂

⊢ D1
−

A011̂

⊢ D3

−
A′

101̂

⊢ D2

A′
001̂

⊢ D4









=









A111̂

⊢ D1
−

A011̂

⊢ D′
2

−
A′

101̂

⊢ D2

A′
001̂

⊢ D′
1









(33)

where,

D1 = A11A00 −A′
01A

′
10 , D2 = A00A11 −A′

10A
′
01 , D3 = D′

2 , D4 = D′
1 .

If the As and Bs were abelian factors, and we were thus dealing with the ordinary matrix algebra over these abelian
parameters, we’d have a much simpler expression for the matrix inverse. The B-matrix would then take the form,

(

B00 B01

B10 B11

)

=







A11

D
−

A01

D

−
A10

D

A00

D






=

(

1
D

0
0 1

D

)(

A11 −A01

−A10 A00

)

=
1

D

(

A11 −A01

−A10 A00

)

(34)

where,

D =

∣

∣

∣

∣

A00 A01

A10 A11

∣

∣

∣

∣

= A00A11 −A01A10 ≈ r− r

cf. D1 = A11A00 −A′
01A

′
10 ≈ l− r

D2 = A00A11 −A′
10A

′
01 ≈ r− l (35)

D3 = A′
11A

′
00 −A01A10 ≈ l− r

D4 = A′
00A

′
11 −A10A01 ≈ r− l

Like the Cayley-Dickson construction, which adds twisting and conjugation to complete the product formulas, here
our new matrix inverse construction adds twisting and hand transformation to arrive at the required corresponding
modified forms. Our single determinant factor, in the ordinary matrix algebra, is now split into four different forms.
Comparing the single determinant to the four new divisors, we see that characteristic twisting profile alteration
balancing the right and left actions once again, and then, of course, we have hand changes in addition to this twisting.

the standard · product:
(

A00 A01

A10 A11

)

·

(

B00 B01

B10 B11

)

=

(

1 0
0 1

)

(36)

Now, when we’re dealing with the standard matrix product (36), and the As and Bs are our non-abelian quaternions,
we start with systems of linear quaternion equations with product expressions already un-twisted. In fact, by simply
removing the primes ′ and hats ˆ from the equations (30) we’d have our starting point,

A00B00 + A01B10 = 1 A00B01 + A01B11 = 0 (37)

A10B00 + A11B10 = 0 A10B01 + A11B11 = 1

The procedure for re-arranging these equations, however, is a little different. Right handed quaternions don’t commute
with each other, so we can’t simplify the expressions by multiplying by these same A-factors. Instead, we must multiply
by the inverses of these known parameters. Then we can re-write these equations, each in terms of one unknown,

A−1
01 A00B00 −A−1

11 A10B00 = A−1
01 A−1

11 A10B01 −A−1
01 A00B01 = A−1

11 (38)

A−1
00 A01B10 −A−1

10 A11B10 = A−1
00 A−1

10 A11B11 −A−1
00 A01B11 = A−1

10

which then leads to the solution,

B00 =
A−1

01

⊢ (A−1
01 A00 −A−1

11 A10)
B01 =

A−1
11

⊢ (A−1
11 A10 −A−1

01 A00)
(39)

B10 =
A−1

00

⊢ (A−1
00 A01 −A−1

10 A11)
B11 =

A−1
10

⊢ (A−1
10 A11 −A−1

00 A01)
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we can write this in terms of two dividing factors, D1 and D2,

(

B00 B01

B10 B11

)

=













−
A−1

01

⊢ D1

A−1
11

⊢ D1

A−1
00

⊢ D2
−

A−1
10

⊢ D2













=

( 1
D1

0

0 1
D2

)

·





−A−1
01 A−1

11

A−1
00 −A−1

10



 (40)

where,

D1 = A−1
11 A10 −A−1

01 A00 D2 = A−1
00 A01 −A−1

10 A11

but, with all the inverse parameters in this expression, it’s hard to compare to our previous formulas for the ordinary
matrix inverse (34), or the twisted product inverse (33). Let us then re-express the equations (38). We can also write,

A11A00B00 −A11A01A
−1
11 A10B00 = A11 A01A10B01 −A01A11A

−1
01 A00B01 = A01 (41)

A10A01B10 −A10A00A
−1
10 A11B10 = A10 A00A11B11 −A00A10A

−1
00 A01B11 = A00

which now gives us a more familiar form,

(

B00 B01

B10 B11

)

=











A11

⊢ D1
−

A01

⊢ D3

−
A10

⊢ D2

A00

⊢ D4











(42)

where,

D1 = (A11A00 −A11A01A
−1
11 A10), D2 = (A10A00A

−1
10 A11 −A10A01),

D4 = (A00A11 −A00A10A
−1
00 A01), D3 = (A01A11A

−1
01 A00 −A01A10),

The inverse solutions (40) and (42) are equivalent. But, in the latter we have four divisors, Dµ, µ = 1, 2, 3, 4,
and these are not easily re-expressed in terms of just 2, the way in which they are found in the first expression.
However, the numerators and signs are the familiar ones from our other inverse matrix formulas, and this allows us
to see just what comparative modifications are required in the standard product case in contrast to the twisted product.

These results, (40) and (42), are expressions for the right side inverse for the associative · product, while (33)
gives the corresponding right side inverse for the non-associative × product. To get the left-inverses, we now take
the As to be our unknowns, and let the Bs be our knowns, and re-solve these equations in a similar manner.

For the non-associative × product we obtain the following left inverse;

Â00 =
B′

111̂

⊢ (B′
11B

′
00 −B10B01)

Â01 =
B011̂

⊢ (B01B10 −B′
00B

′
11)

(43)

Â10 =
B′

101̂

⊢ (B′
10B

′
01 −B11B00)

Â11 =
B001̂

⊢ (B00B11 −B′
01B

′
10)

(

Â00 Â01

Â10 Â11

)

=









B′
111̂

⊢ D1
−

B011̂

⊢ D3

−
B′

101̂

⊢ D2

B001̂

⊢ D4









=









B′
111̂

⊢ D1
−

B011̂

⊢ D′
2

−
B′

101̂

⊢ D2

B001̂

⊢ D′
1









(44)

where,

D1 = B′
11B

′
00 −B10B01 , D2 = B11B00 −B′

10B
′
01 , D3 = D′

2 , D4 = D′
1 .

where we have solved for these expressions working from the same side of the equations as we did before to obtain
the corresponding (33) right-side inverse results, that is, we again move all the unknowns over to the l.h.s of the
knowns. This allows us to write our formulas with the divisors appearing on the same side as before, so that
we can compare the expressions more easily. A consequence of this approach, is that when comparing our divi-
sors to the previous results in (35) we find they now have the unbalanced twisted product forms, D1 ≈ l−l, D3 ≈ r−r.
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However, looking back at our original comparisons in (35), we notice that the determinant in ordinary matrix
algebra really doesn’t have a definitive twisted product form. In fact, it relies on the permutation symmetry in the
multiplication of factors to manifest as just one divisor, D, instead of four.

The twisted profiles, r - r , r - l , l - r , l - l , are all equivalent in ordinary matrix algebra, and
any one of these could be picked to set our reference point for D. We set the reference to r - r to illustrate
how the comparative products for, Dµ, µ = 1, 2, 3, 4, could be considered twisted modifications of the original
state. But, if we either started with a different reference, or solved for these formulas from the other side of the
equations, our divisors would reflect a different twisting relative to our reference. Whatever the case, however,
we always get either the balanced pair r - l and l - r , or the unblanced pair, r - r and l - l , in our four divisors.

For the left inverse of the standard · product, we can’t continue to solve from the same side of the equations, as we
have done repeatedly above (unless we want to use the two-hand quaternion method for this inverse, which doesn’t
really require it), so we solve (37) from the other side of the equations this time. Our divisors are now on the right,
symbolized by ⊣ instead of the previous ⊢ in our denominators. We obtain the following,

A00 =
B−1

10

(B00B
−1
10 −B01B

−1
11 ) ⊣

A01 =
B−1

00

(B10B
−1
00 −B11B

−1
01 ) ⊣

(45)

A10 =
B−1

11

(B01B
−1
11 −B00B

−1
10 ) ⊣

A11 =
B−1

01

(B11B
−1
01 −B10B

−1
00 ) ⊣

we can write this in terms of two dividing factors, D1 and D2,

(

A00 A01

A10 A11

)

=













−
B−1

10

D1 ⊣

B−1
00

D2 ⊣

B−1
11

D1 ⊣
−

B−1
01

D2 ⊣













=





−B−1
10 B−1

00

B−1
11 −B−1

01



 ·

( 1
D1

0

0 1
D2

)

(46)

where,

D1 = B01B
−1
11 −B00B

−1
10 D2 = B10B

−1
00 −B11B

−1
01

Notice that the diagonal matrix of divisors has moved to the right. This is the left-inverse corresponding to the
right-inverse (40). But again, with all the inverse parameters in this expression, it’s hard to compare to our previous
formulas for the ordinary matrix inverse (34), or the twisted product inverse (33). So, we once again re-express this
result in a more familiar form,

(

A00 A01

A10 A11

)

=











B11

D1 ⊣
−

B01

D3 ⊣

−
B10

D2 ⊣

B00

D4 ⊣











(47)

where,

D1 = (B00B11 −B01B
−1
11 B10B11), D2 = (B00B

−1
10 B11B10 −B01B10),

D4 = (B11B00 −B10B
−1
00 B01B00), D3 = (B11B

−1
01 B00B01 −B10B01),

and can compare this left-inverse (47) to the corresponding right-inverse (42). When seeking to inspect the differences
among the various inverses, these forms help to reveal what’s changed. However, in the case of the · product, we
have yet another way to write the inverse formulas. This time all the numerators are 1, so left and right divisions are
the same, we no longer need the ⊢ and ⊣ symbols. This allows us to see that once a matrix has a left inverse it has
a right inverse, and visa versa, and the two are always the same; a fact hidden in the complexity of the other formats.

left · inverse A[..] = right · inverse B[..] =











1

(B00 −B01B
−1
11 B10)

1

(B10 −B11B
−1
01 B00)

1

(B01 −B00B
−1
10 B11)

1

(B11 −B10B
−1
00 B01)











|











1

(A00 −A01A
−1
11 A10)

1

(A10 −A11A
−1
01 A00)

1

(A01 −A00A
−1
10 A11)

1

(A11 −A10A
−1
00 A01)











(48)
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A similar comparison for the left and right × product inverses reveals that they are generally different;

left × inverse Â[..] = right × inverse B̂[..] =













1̂

⊢ (B′
00 −B′−1

11 B10B01)

1̂

⊢ (B10 −B−1
01 B′

00B
′
11)

1̂

⊢ (B′
01 −B′−1

10 B11B00)

1̂

⊢ (B11 −B−1
00 B′

01B
′
10)













|













1̂

⊢ (A00 −A−1
11 A′

01A
′
10)

1̂

⊢ (A10 −A−1
01 A′

11A
′
00)

1̂

⊢ (A′
01 −A′−1

10 A00A11)

1̂

⊢ (A′
11 −A′−1

00 A10A01)













(49)

But, by inspection we can see that the corresponding divisors on the main diagonal are just hand transforms of each
other, e.g. (B′

00 −B′−1
11 B10B01)

′ = (B′
00)

′ − (B′−1
11 B10B01)

′ = B00 −B′
01B

′
10B

−1
11 , and since the right hand quaternion

B−1
11 commutes with the left hand quaternions, B′

10 and B′
01, we can permute the factors to obtain, B00−B−1

11 B′
01B

′
10,

which is then identical in form to the corresponding divisor, A00 − A−1
11 A′

01A
′
10, on the other side. Now, if X ′ = Y ,

and Y = 0, then X = 0, also; i.e. the hand transform of 0 is always 0. So, whenever one of the divisors on the
main diagonal vanishes, neither left nor right inverses exist. Now, if we examine when the top element on the cross
diagonal vanishes, i.e. B10 − B−1

01 B′
00B

′
11 = 0, we see the condition is, B01B10 = B′

00B
′
11. But, the product of two

right-handed quaternions is always another right handed quaternion. Similarily, the product of two left handed
quaternions is another left handed quaternion. So, the l.h.s and r.h.s are only equal when both products are real
numbers, i.e. B01B10 ∈ R and B′

00B
′
11 ∈ R. In this case, either both factors in the pair product are real numbers, or

the versor of one factor is the quaternion conjugate of the versor of the other. Either way, the factors must commute,
and B′

00B
′
11 can be written B′

11B
′
00, showing the divisor has same form, A10 − A−1

01 A′
11A

′
00, that’s on the other side.

Similarly, we can show that the condition that the other divisor in the cross diagonal vanishes, is that the factors
commute, and again the form must be equivalent to that on the other side. So, if any of the 4 divisors vanish in
either left side inverse or right side inverse matrix, then the corresponding divisor vanishes also for the other matrix,
and both left and right inverses either exist together or are non-existant together. Thus, A matrix either has both left
and right non-associative × product inverses, or neither.

resolving the two-hand quaternions:
Now, having reviewed the forms for these product inverses, and compared their various modifications, we need to
return to the twisted product inverse and complete these expressions (32)-(33) and (43)-(44). These formulas make use
of the two-hand quaternion representation, or hexpe numbers, and can be finally resolved and re-expressed in terms
of just one-hand quaternions, i.e. the right-hand quaternions, again, by using the inverse formulas for hexpe numbers.

Octonion Forms. First, we shall use the rules of two-hand quaternion algebra to prove that numbers with octonion
form have the same left and right inverses for the non-associative × product, despite the fact that the formulas in
(49) show these quatro-quaternion inverses are otherwise generally differerent; and thus we shall resolve the inverse
for these numbers to show their corresponding one hand, i.e. right hand, form.

Now, given a number with octonion form (5), we set, A00 = B00 = A, A10 = B10 = B, A01 = B01 = −B∗, and
A11 = B11 = A∗. Substituting these into the formulas (49), we obtain,

left × inverse Â[..] = right × inverse B̂[..] =0BBBB� 1̂

⊢ (A′ − (A∗)′−1B(−B∗))

1̂

⊢ (B − (−B∗)−1A′(A∗)′)

1̂

⊢ ((−B∗)′ − B′−1(A∗)A)

1̂

⊢ ((A∗)− A−1(−B∗)′B′)

1CCCCA |

0BBBB� 1̂

⊢ (A− (A∗)−1(−B∗)′B′)

1̂

⊢ (B − (−B∗)−1(A∗)′A′)

1̂

⊢ ((−B∗)′ −B′−1A(A∗))

1̂

⊢ ((A∗)′ −A′−1B(−B∗))

1CCCCA (50)

At first glance, these still look different, because of the dissimilar hand transforms appearing in the corresponding
divisors. However, a careful inspection reveals that all the divisors are composed of one-hand quaternions only. This
is because the products, BB∗ = B∗B = B′(B∗)′ = (B∗)′B′ = |B|2, etc.. i.e. the quaternions have the same square
norm whether represented in their right hand or left hand format, and these norms are just real numbers. This
means that each divisor is either completely a right-hand quaternion, or entirely left-handed.

Now we can use the commutation laws for pivots from two-hand quaternion algebra, which tells us that for any two
right-hand quaternions, X, Y ∈ HR, we can write, X ′ · Ŷ = Y ·X and X · Ŷ = X · Y . This allows us to commute the
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divisors with the unit pivot parameter 1̂ appearing in the numerator, e.g.,

1̂

⊢ (A′ − (A∗)′−1B(−B∗))
=

1

(A′ + (A∗)′−1|B|2)
· 1̂ = 1 ·

1

(A + (A∗)−1|B|2)
(51)

Since the factor on the l.h.s is a left-hand quaternion, we can move it over to the r.h.s of the unit pivot, where it
transforms into a right-hand quaternion, allowing us to remove the hat ˆ from the pivot 1̂, and represent that now
as the ordinary unit 1.

When the factor on the l.h.s is already a right-hand quaternion, we can simply remove the hat ˆ from the pivot
without further modification to the expression, e.g.,

1̂

⊢ (B − (−B∗)−1A′(A∗)′)
=

1

(B + (B∗)−1|A|2)
· 1̂ =

1

(B + (B∗)−1|A|2)
· 1 (52)

In this way, we can resolve the octonion form inverse into right-hand quaternion format. So, we have,

left × inverse A[..] = right × inverse B[..] =0BBB� 1

(A + (A∗)−1|B|2)

1

(B + (B∗)−1|A|2)

1

(−B∗ −B−1|A|2)

1

(A∗ + A−1|B|2)

1CCCA |

0BBB� 1

(A + (A∗)−1B|2)

1

(B + (B∗)−1|A|2)

1

(−B∗ −B−1|A|2)

1

(A∗ + A−1|B|2)

1CCCA (53)

proving that they are identical. The unique inverse can then be re-expressed conveniently by

(

A −B∗

B A∗

)−1

×

=











A∗

|A|2 + |B|2
B∗

|B|2 + |A|2

−B

|B|2 + |A|2
A

|A|2 + |B|2











(54)

hence,

(

A −B∗

B A∗

)−1

×

=
1

D
·

(

A∗ B∗

−B A

)

(55)

where,

D = (A)(A∗)− (−B∗)(B) = |A|2 + |B|2

For the standard · product, the octonion form inverse can be obtained, for comparison, by substituting in (48), the
corresponding (A, B) quaternions, we get,�

A −B∗

B A∗

�−1

·

=

0BBB� 1

A + B∗(A∗)−1B

1

B + A∗(B∗)−1A

1

−B∗ − AB−1A∗

1

A∗ + BA−1B∗

1CCCA (56)

from which we see that its associative inverse (56) is generally different from its non-associative inverse (53).
Comparing terms, we find that the condition under which these two inverses are the same, is, A · B∗ = B∗ · A,
which we can also write, [A, B∗] = 0. However, it is trivial to demonstrate that if, [A, B∗] = 0 , then, [A, B] = 0 ,
also, and visa versa. So, this means that the pair of quaternions (A, B) must commute, AB = BA, for the
inverses to be identical. Looking ahead at equation (97), we see that this is the same condition required for the
difference of squares to vanish, i.e. o × o − o · o = 0 , so that the octonion form number then has the same
square under the associative and non-associative products. Logically, reviewing the definitions (1) and (2), and
recognising that they differ only by a simple twisting, we see immediately why commuting quaternions produce
these same results. But, now we can make a stronger non-obvious statement, we deduce that, if the parameters

of an octonion form matrix non-commute, it must have a different associative inverse from its non-associative inverse.
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General Forms. Well, dealing with the octonion form is relatively straightforward. But, now we must examine
the inverse formulas of the more general quatro-quaternion, and resolve its two-hand quaternion solutions into the
right-hand. Examining the parameter solutions for the right (32), and left (43), non-associative inverses, reveals that
all the divisors appear in the same basic form, X ′−Y , or, X −Y ′, X, Y ∈ HR, that is, the summation of a left-hand
quaternion and right-hand quaternion. This is a particular type of simplified hexpe number that we refer to as a
bilateral factor in our previous paper [PJ2] [2−], because it has no cross terms from the product of left-hand bases
with right-hand bases appearing in the sum. It therefore has a relatively simple hexpe number inverse formula which
we reproduce below (from page 23 of that paper) for convenience:

bilateral factor inverse:

h = h0 · 1 + hR1 · iR + hR2 · jR + hR3 · kR + hL1 · iL + hL2 · jL + hL3 · kL h, h−1 ∈ Xn , hj , wk ∈ R (57)

h−1 = (w0 · 1 d = (w0 · h0

+ wR1 · iR + wR2 · jR + wR3 · kR − wR1 · hR1 −wR2 · hR2 −wR3 · hR3

+ wL1 · iL + wL2 · jL + wL3 · kL − wL1 · hL1 −wL2 · hL2 −wL3 · hL3)

+ wM1 · iM + wM2 · jM + wM3 · kM wM1 = 2h0hR1hL1

+ wA1 · iA + wA2 · jA + wA3 · kA wM2 = 2h0hR2hL2

+ wZ1 · iZ + wZ2 · jZ + wZ3 · kZ)/d wM3 = 2h0hR3hL3 (58)

w0 = h0(+h2
0 + h2

R1 + h2
R2 + h2

R3 + h2
L1 + h2

L2 + h2
L3)

wR1 = hR1(−h2
0 − h2

R1 − h2
R2 − h2

R3 + h2
L1 + h2

L2 + h2
L3) wA1 = 2h0hR2hL3

wR2 = hR2(−h2
0 − h2

R1 − h2
R2 − h2

R3 + h2
L1 + h2

L2 + h2
L3) wA2 = 2h0hR3hL1

wR3 = hR3(−h2
0 − h2

R1 − h2
R2 − h2

R3 + h2
L1 + h2

L2 + h2
L3) wA3 = 2h0hR1hL2

wL1 = hL1(−h2
0 + h2

R1 + h2
R2 + h2

R3 − h2
L1 − h2

L2 − h2
L3) wZ1 = 2h0hR3hL2

wL2 = hL2(−h2
0 + h2

R1 + h2
R2 + h2

R3 − h2
L1 − h2

L2 − h2
L3) wZ2 = 2h0hR1hL3

wL3 = hL3(−h2
0 + h2

R1 + h2
R2 + h2

R3 − h2
L1 − h2

L2 − h2
L3) wZ3 = 2h0hR2hL1

In the above expressions, h, is our special hexpe number that is the sum of right-hand and left-hand quaternions.
Then, h−1, is the inverse of this number, given in terms of scalar weight factors, the w’s, a scalar normalizing
determinant divisor, d, the 16-dimensional basis units for the hexpe number: the seven, 1, iR, jR, kR, iL, jL, kL,
from the original bilateral factor, and an additional nine, iM , jM , kM , iA, jA, kA, iZ , jZ , kZ , required to complete the
inverse. Notice that the weight factors, w’s, all vanish for the m-a-z units, whenever the scalar, h0, is zero. When
this scalar is zero our bilateral factor is the sum of a right pure quaternion and left pure quaternion. In this case, the
inverse, h−1, is also a pure right left quaternion, and the inverse of a bilateral factor is just another bilateral factor.
Otherwise, the inverse is a general hexpe number with typically all 16-dimensions present. We can simplify this
expression (58), for the inverse, by introducing a few additional symbolic definitions. For any given hexpe number, h,
let, R(h), be the right pure quaternion component, and, L(h), be the left pure quaternion component. Then, let’s add
right conjugation and left conjugation operators, so that, while, h∗ is the conjugate of both right and left basis units
simultaneously, h∗R is the conjugate of the right basis only, and, h∗L is the conjugate of the left basis only. Then, we
replace all the ijk units for the m-a-z in h−1 with their equivalent r-l pair products, iM = iRiL, . . . , jA = kRiL, . . .
etc., Our bilateral factor inverse formula becomes,

h−1 =
h2

0h
∗ + r2h∗R + l2h∗L + 2h0R(h)L(h)

(h2
0 + r2 + l2)2 − 4r2l2

h, h−1 ∈ Xn , R(h) ∈ HR , L(h) ∈ HL (59)

where,

h = h0 + R(h) + L(h) d = h4
0 + 2h2

0r
2 + 2h2

0l
2 + r4 − 2r2l2 + l4

h∗ = h0 −R(h)− L(h) = (h2
0 + r2 + l2)2 − 4r2l2

h∗R = h0 −R(h) + L(h) = (h2
0 + (r + l)2)(h2

0 + (r − l)2)

h∗L = h0 + R(h)− L(h)

R(h) = hR1 · iR + hR2 · jR + hR3 · kR

L(h) = hL1 · iL + hL2 · jL + hL3 · kL

r2 = R(h)R(h)∗ = |R(h)|2 = h2
R1 + h2

R2 + h2
R3

l2 = L(h)L(h)∗ = |L(h)|2 = h2
L1 + h2

L2 + h2
L3

http://www.hypercomplex.com/research/emgrav/hypcx-20060129a.pdf
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Another way to express this same formula (59) is,

h−1 = (h2
0(h0 −R(h)− L(h)) + r2(h0 −R(h) + L(h)) + l2(h0 + R(h)− L(h)) + 2h0R(h)L(h))/d (60)

Then, when, h = X + Y ′ : X, Y ∈ HR, we have, h0 = X0 + Y0 , R(h) = X − X0 , L(h) = Y ′ − Y0 . So, we can
re-write this inverse,

h−1 = ( h2
0(X

∗ + Y ′∗) + r2(X∗ + Y ′) + l2(X + Y ′∗) + 2h0(X −X0)(Y
′ − Y0) )/d (61)

We now have the inverse expressed in terms of r-h and l-h quaternions appearing only in the numerator, the
denominator having a pure scalar factor, d. This allows us to invert the divisors in the right (32), and left (43),

twisted product inverse expressions. All the formulas we have to resolve there have the form, h−1 ·Z · 1̂, or h−1 ·Z ′ · 1̂,
where, Z ∈ HR, and, h = X + Y ′, with, X, Y ∈ HR. For the the first form, we apply the associative and distributive
laws from the two-hand quaternion algebra, to obtain (62) and (63),

h−1 · Z · 1̂ = (h−1 · Z) · 1̂ (62)

= ( h2
0((X∗Z) · 1̂ + (Y ′∗Z) · 1̂) + r2((X∗Z) · 1̂ + (Y ′Z) · 1̂) + l2((XZ) · 1̂ + (Y ′∗Z) · 1̂) + 2h0(X −X0)((Y ′ − Y0)Z) · 1̂ )/d (63)

= ( h2
0((X∗Z) · 1̂ + Z(Y ′∗ · 1̂)) + r2((X∗Z) · 1̂ + Z(Y ′ · 1̂)) + l2((XZ) · 1̂ + Z(Y ′∗ · 1̂)) + 2h0(X −X0)Z((Y ′ − Y0) · 1̂) )/d (64)

= ( h2
0((X∗Z) · 1 + Z(1 · Y ∗)) + r2((X∗Z) · 1 + Z(1 · Y ) + l2((XZ) · 1 + Z(1 · Y ∗)) + 2h0(X −X0)Z(1 · (Y − Y0)) )/d (65)

= ( h2
0(X∗Z + ZY ∗) + r2(X∗Z + ZY ) + l2(XZ + ZY ∗) + 2h0(X −X0)Z(Y − Y0) )/d (66)

Using the fact that l-h quaternions commute with r-h quaternions, we permute all the l-h quaternions to the
r-h-s of the r-h quaternions; the associative law for pivots re-groups these l-h quaternions with pivots (64). Then,

using the commutative law for pivots we move each l-h quaternion over to the r-h-s of the unit 1̂ pivot, where it
changes into a r-h quaternion, and the unit pivot becomes the ordinary scalar unit 1, so we remove the hat ˆ, giving
us the final right-hand form (65), which we can simplify removing parentheses etc..to obtain (66); and we proceed
similarily for the second form,

h−1 · Z′ · 1̂ = (h−1 · Z′) · 1̂ (67)

= ( h2
0((X

∗Z′) · 1̂ + (Y ′∗Z′) · 1̂) + r2((X∗Z′) · 1̂ + (Y ′Z′) · 1̂) + l2((XZ′) · 1̂ + (Y ′∗Z′) · 1̂) + 2h0(X −X0)((Y
′ − Y0)Z

′) · 1̂ )/d (68)

= ( h2
0(X

∗(Z′ · 1̂) + (Y ′∗Z′) · 1̂) + r2(X∗(Z′ · 1̂) + (Y ′Z′) · 1̂) + l2(X(Z′ · 1̂) + (Y ′∗Z′) · 1̂) + 2h0(X −X0)(((Y
′ − Y0)Z′) · 1̂) )/d (69)

= ( h2
0(X

∗(1 · Z) + 1 · (ZY ∗)) + r2(X∗(1 · Z) + 1 · (ZY )) + l2(X(1 · Z) + 1 · (ZY ∗)) + 2h0(X −X0)(1 · (Z(Y − Y0))) )/d (70)

= ( h2
0(X

∗Z + ZY ∗) + r2(X∗Z + ZY ) + l2(XZ + ZY ∗) + 2h0(X −X0)Z(Y − Y0) )/d (71)

However, we now make use of the hand transformation product rule, (AB)′ = B′A′, which reverses the factors, to

resolve the expressions, e.g. (Y ′∗Z ′) · 1̂ = 1 · (Y ′∗Z ′)′ = 1 · (ZY ∗) = ZY ∗. We must always remember to permute the
entire l-h quaternion to the r-h-s of the pivot in a single move, and if this left-hand quaternion is composed of the
products of many other l-h quaternion factors, then, after the move, we use the hand transformation rule to reverse
the order of the factors in converting them to the r-h. We then obtain the one-hand form (71), where everything is
in the right-hand quaternion representation.

Notice that (66) and (71) are the same. That is, h−1 · Z ′ · 1̂ = h−1 · Z · 1̂, and it doesn’t matter whether the Z
parameter in this expression is in left-hand or right-hand format. This is a unique feature of this particular product
expression, because of the appearence of the unit pivot 1̂. If there were any other non-trivial quaternion there (i.e.

not proportional to the unit scalar), we’d usually obtain two different results, e.g. h−1 ·Z ′ · Q̂ and h−1 ·Z · Q̂ would not

generally be the same. If we replace the unit pivot 1̂, with a general pivot Q̂, in (62) and (67), to compare, we’d find
that terms that end up with Z ·Q in their expressions, in the first case, produce Q ·Z instead, in the second. Of course,
when Q = 1, this difference vanishes. Or, more generally, if [Q, Z] = 0 , the results are again the same. A consequence
of this is that it doesn’t matter whether the numerators in the right (32), or left (43), inverse formulas, are in
r-h or l-h format, we’d obtain the same results. So, we can just remove all the prime marks ′ from these numerators.
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The four divisors in the twisted product right (32) and left (43) inverse formulas, then, determine the difference
between these right and left inverses. Therefore, we now start with the formula,

Given, X, Y, Z ∈HR; h = X + Y ′ ∈Xn, SX = X0, SY = Y0, V X = X −X0, V Y = Y − Y0, etc..

h−1 · Z · 1̂ = (72)

( (X0 + Y0)2(X∗Z + ZY ∗) + |X −X0|2(X∗Z + ZY ) + |Y − Y0|2(XZ + ZY ∗) + 2(X0 + Y0)(X −X0)Z(Y − Y0) )

((X0 + Y0)2 + |X −X0|2 + |Y − Y0|2)2 − 4|X −X0|2|Y − Y0|2

=
( (S(X + Y ))2(X∗Z + ZY ∗) + |V X|2(X∗Z + ZY ) + |V Y |2(XZ + ZY ∗) + 2(S(X + Y ))(V X)Z(V Y ) )

((S(X + Y ))2 + |V X|2 + |V Y |2)2 − 4|V X|2|V Y |2
(73)

and replace the X, Y, Z parameters with the corresponding quaternions from our twisted product inverse expressions
to obtain the right-hand representation of these results. In (72) we use the modern notation, but sometimes it helps to
see things Hamilton’s way. So, we’ve borrowed some of W.R. Hamilton’s original notation, his scalar and vector opera-
tors, S( · ) and V ( · ), which extract the appropriate parts of the quaternion, and we illustrate the same formula written
alternatively in (73) using the older notation. Hamilton introduced six operators, S, V, K, N, T, U , for the, scalar,
vector, conjugate, norm, tensor, and versor, parts of a quaternion. We’ve kept the modern conjugate ∗ and norm
| · |2, however, since we think today that makes things clearer. With the prime ′ marks removed from the numerators,

right × inverse (32):

B̂00 = (A11A00 − A′
01A′

10)−1 · A11 · 1̂ , X = A11A00 , Y = −A10A01 , Z = A11 (74)

B̂10 = (A′
10A′

01 − A00A11)−1 · A10 · 1̂ , X = −A00A11 , Y = A01A10 , Z = A10 (75)

B̂01 = (A01A10 − A′
11A′

00)−1 · A01 · 1̂ , X = A01A10 , Y = −A00A11 , Z = A01 (76)

B̂11 = (A′
00A′

11 − A10A01)−1 · A00 · 1̂ , X = −A10A01 , Y = A11A00 , Z = A00 (77)

left × inverse (43):

Â00 = (B′
11B′

00 − B10B01)−1 ·B11 · 1̂ , X = −B10B01 , Y = B00B11 , Z = B11 (78)

Â10 = (B′
10B′

01 − B11B00)−1 ·B10 · 1̂ , X = −B11B00 , Y = B01B10 , Z = B10 (79)

Â01 = (B01B10 − B′
00B′

11)−1 ·B01 · 1̂ , X = B01B10 , Y = −B11B00 , Z = B01 (80)

Â11 = (B00B11 − B′
01B′

10)−1 ·B00 · 1̂ , X = B00B11 , Y = −B10B01 , Z = B00 (81)

these expressions then yield the non-associative inverses. Note that we reverse the order of the factors when
identifying the Y parameter, i.e. Y ′ = −A′

01A
′
10 =⇒ Y = (Y ′)′ = (−A′

01A
′
10)

′ = −A10A01, etc. since the
hand transformation rule for products applies. Also, notice that if we exchange the X and Y parameters in (73)
the numerator changes, but the denominator remains unchanged. This means that (74) and (77) now have the
same denominator, for example, and all of our (73)-type denominators fall into such pairs. Looking back at the
original right (33) and left (44) matrix inverse formulas, we see that these same equal pairs come from those previous
denominators that were hand transforms of each other, where we found, D4 = D′

1 and D3 = D′
2.

Three twisted expressions of the form, XZ + ZY , and one vector product form, (V X)Z(V Y ), appear in (73). These
are the only terms that result in general quaternions, the other component factors and parameters are all effectively
scalars. Although quaternions don’t usually commute, in the particular assignments to the three X, Y, Z, parameters
above, we can effectively permute this inside Z parameter to the outside of these twisted expressions. We need only
one extra symbolic device to facilitate recognition of this commuting property. Note, the variables, X, Y , are both
themselves formed from products of two quaternion factors. In order to commute the Z with these, we have to reverse
the order of the factors within the X or Y , so let us define a symbolic operator to denote this: if X = PQ then

↼−
X = QP .

Consider, for example, the evaluation of the B00 in (74). When we substitute values for the X, Y, Z, in
(X∗Z + ZY ∗), we obtain, ((A11A00)∗A11 + A11(−A10A01)∗). But, conjugation reverses the order of products, so,
(A11A00)∗A11 = A∗

00A∗
11A11 = A∗

00|A11|2 = |A11|2A∗
00 = A11A∗

11A∗
00. Therefore, we can write, (X∗Z + ZY ∗) = Z(

↼−
X∗ + Y ∗), and

we have effectively commuted the inside parameter to the l.h.s of the twisted expression, which allows us to factor
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this out on the left. This peculiar commuting property is a special case situation that arises from the particular
selection the four quaternions, (A00, A10, A01, A11), when allocated to the three parameters, X, Y, Z, and is a unique
feature of our matrix inverse formulas. The reversing operation,

↼−
X , helps to un-twist and simplify these expressions.

Now, consider the vector product, (V X)Z(V Y ). On substitution, (V (A11A00))A11(V (−A10A01)). On the left we have,
(V (A11A00))A11 = (A11A00−S(A11A00))A11 = (A11A00A11 − A11S(A00A11)). So, again we can effectively commute the
variables and re-write the expression with Z moving to the left, (V X)Z(V Y ) = Z(V

↼−
X)(V Y ).

For the right × inverse:

B00 : X = A11A00 , Y = −A10A01 , Z = A11 B01 : X = A01A10 , Y = −A00A11 , Z = A01

X
∗
Z + ZY

∗ = A11(A
∗

11A
∗

00 − A
∗

01A
∗

10) = Z(
↼−
X

∗ + Y
∗) X

∗
Z + ZY

∗ = −A01(A
∗

11A
∗

00 − A
∗

01A
∗

10) = Z(
↼−
X

∗ + Y
∗)

X
∗
Z + ZY = A11(A∗

11A
∗

00 − A10A01) = Z(
↼−
X

∗ + Y ) X
∗
Z + ZY = −A01(A00A11 − A

∗

01A
∗

10) = Z(
↼−
X

∗ + Y )

XZ + ZY
∗ = A11(A00A11 − A

∗

01A
∗

10) = Z(
↼−
X + Y

∗) XZ + ZY
∗ = −A01(A∗

11A
∗

00 − A10A01) = Z(
↼−
X + Y

∗)

(V X)Z(V Y ) = A11(V (A00A11))(V (−A10A01)) = Z(V ↼−
X)(V Y ) (V X)Z(V Y ) = −A01(V (A10A01))(V (A00A11)) = Z(V ↼−

X)(V Y )

(82)

B10 : X = −A00A11 , Y = A01A10 , Z = A10 B11 : X = −A10A01 , Y = A11A00 , Z = A00

X
∗
Z + ZY

∗ = −(A∗

11A
∗

00 − A
∗

01A
∗

10)A10 = (X∗ +
↼−
Y

∗)Z X
∗
Z + ZY

∗ = (A∗

11A
∗

00 − A
∗

01A
∗

10)A00 = (X∗ +
↼−
Y

∗)Z

X
∗
Z + ZY = −(A∗

11A
∗

00 − A10A01)A10 = (X∗ +
↼−
Y )Z X

∗
Z + ZY = (A00A11 − A

∗

01A
∗

10)A00 = (X∗ +
↼−
Y )Z

XZ + ZY
∗

= −(A00A11 − A
∗

01A
∗

10)A10 = (X +
↼−
Y

∗
)Z XZ + ZY

∗
= (A

∗

11A
∗

00 − A10A01)A00 = (X +
↼−
Y

∗
)Z

(V X)Z(V Y ) = −(V (A00A11))(V (A10A01))A10 = (V X)(V ↼−
Y )Z (V X)Z(V Y ) = (V (−A10A01))(V (A00A11))A00 = (V X)(V ↼−

Y )Z

The un-twisting of all the expressions for the inverse matrix components reveals a simpler pattern. The three
conjugated variations of the twisted form, XZ + ZY , each split into two, Z(

↼−
X + Y ) and (X +

↼−
Y )Z, where Z factors out

on the left and the right. For the right × inverse, Z moves left in the top row, but right in the bottom row. While,
for the left × inverse, Z moves right in the first column, and left in the second column. By extracting a minus sign
to the outside, for the cross terms, e.g. {B10, B01} above, we can then re-write our matrix formulas in terms of the
usual four quaternion numerators, i.e. (A11,−A10,−A01, A00), that appear in our other matrix inverse formulas.

For the left × inverse:

A00 : X = −B10B01 , Y = B00B11 , Z = B11 A01 : X = B01B10 , Y = −B11B00 , Z = B01

X
∗
Z + ZY

∗
= (B

∗

00B
∗

11 − B
∗

01B
∗

10)B11 = (X
∗

+
↼−
Y

∗
)Z X

∗
Z + ZY

∗
= −B01(B

∗

00B
∗

11 − B
∗

01B
∗

10) = Z(
↼−
X

∗
+ Y

∗
)

X
∗
Z + ZY = (B11B00 − B

∗

01B
∗

10)B11 = (X∗ +
↼−
Y )Z X

∗
Z + ZY = −B01(B11B00 − B

∗

01B
∗

10) = Z(
↼−
X

∗ + Y )

XZ + ZY
∗ = (B∗

00B
∗

11 − B10B01)B11 = (X +
↼−
Y

∗)Z XZ + ZY
∗ = −B01(B

∗

00B
∗

11 − B10B01) = Z(
↼−
X + Y

∗)

(V X)Z(V Y ) = (V (−B10B01))(V (B11B00))B11 = (V X)(V ↼−
Y )Z (V X)Z(V Y ) = −B01(V (B10B01))(V (B11B00)) = Z(V ↼−

X)(V Y )

(83)

A10 : X = −B11B00 , Y = B01B10 , Z = B10 A11 : X = B00B11 , Y = −B10B01 , Z = B00

X
∗
Z + ZY

∗ = −(B∗

00B
∗

11 − B
∗

01B
∗

10)B10 = (X∗ +
↼−
Y

∗)Z X
∗
Z + ZY

∗ = B00(B∗

00B
∗

11 − B
∗

01B
∗

10) = Z(
↼−
X

∗ + Y
∗)

X
∗
Z + ZY = −(B∗

00B
∗

11 − B10B01)B10 = (X∗ +
↼−
Y )Z X

∗
Z + ZY = B00(B∗

00B
∗

11 − B10B01) = Z(
↼−
X

∗ + Y )

XZ + ZY
∗ = −(B11B00 − B

∗

01B
∗

10)B10 = (X +
↼−
Y

∗)Z XZ + ZY
∗ = B00(B11B00 − B

∗

01B
∗

10) = Z(
↼−
X + Y

∗)

(V X)Z(V Y ) = −(V (B11B00))(V (B10B01))B10 = (V X)(V ↼−
Y )Z (V X)Z(V Y ) = B00(V (B11B00))(V (−B10B01)) = Z(V ↼−

X)(V Y )

To see this, first notice that we may now factor out the Z parameter from the entire expression in (73), and we can
thus re-write this formula (73) in two ways, Z · ρX(X, Y ) and ρY (X, Y ) · Z;

Z · ρX(X, Y ) = Z ·
( (S(X + Y ))2(

↼−
X∗ + Y ∗) + |V X|2(

↼−
X∗ + Y ) + |V Y |2(

↼−
X + Y ∗) + 2(S(X + Y ))(V

↼−
X )(V Y ) )

((S(X + Y ))2 + |V X|2 + |V Y |2)2 − 4|V X|2|V Y |2
(84)

ρY (X, Y ) · Z =
( (S(X + Y ))2(X∗ +

↼−
Y ∗) + |V X|2(X∗ +

↼−
Y ) + |V Y |2(X +

↼−
Y ∗) + 2(S(X + Y ))(V X)(V

↼−
Y ) )

((S(X + Y ))2 + |V X|2 + |V Y |2)2 − 4|V X|2|V Y |2
· Z (85)
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The non-associative × product inverse formulas can then be written in the usual matrix form,

right × inverse (33):

(

B00 B01

B10 B11

)

=











A11

D1 ⊣

−A01

D3 ⊣

−A10

⊢ D2

A00

⊢ D4











=





A11 ·D
−1
1 −A01 ·D

−1
3

D−1
2 · (−A10) D−1

4 ·A00



 (86)

where,

D−1
1 = ρX(A11A00,−A10A01), D−1

2 = −ρY (−A00A11, A01A10),

D−1
4 = ρY (−A10A01, A11A00), D−1

3 = −ρX(A01A10,−A00A11).

where everything is once more expressed in right-hand quaternions. Right × inverse one-hand format (86) is the
equivalent of its two-hand format (33), and left × inverse one-hand format (87) the equivalent of two-hand (44).
The formulas (84) and (85) do not reflect the minus sign extractions for the matrix cross terms, as exhibited in
the expanded expressions, for {B10, B01} in (82) and {A10, A01} in (83), so we include these minus signs in the
divisor definitions here for the Dµ, µ = 1, 2, 3, 4. Notice also, that while all our divisors were on the left, in the
two-hand format, here we have a mixing of left and right divisions within the same matrix once we’ve converted to the
one-hand format. The divisors move to the right in the top row, and to the left in bottom row, for the right × inverse.

left × inverse (44):

(

A00 A01

A10 A11

)

=











B11

⊢ D1

−B01

D3 ⊣

−B10

⊢ D2

B00

D4 ⊣











=





D−1
1 ·B11 −B01 ·D

−1
3

D−1
2 · (−B10) B00 ·D

−1
4



 (87)

where,

D−1
1 = ρY (−B10B01, B00B11), D−1

2 = −ρY (−B11B00, B01B10),

D−1
4 = ρX(B00B11,−B10B01), D−1

3 = −ρX(B01B10,−B11B00).

While, the divisors move to the left in the first column, and to the right in the second column, for the left × inverse.
Observe too, that if we swap the X and Y parameters in the ρX(X, Y ) of (84), we’d almost get the expression for
ρY (X, Y ) in (85), except for the last vector product term (V X)(V Y ) in the numerator. If (V

↼−
Y )(V X) = (V X)(V

↼−
Y ) ,

then we could write, ρY (X, Y ) = ρX(Y, X), and our four divisors, Dµ, µ = 1, 2, 3, 4, would reduce to just two. In
fact, we’d get, D1 = D4 and D2 = D3, for both right and left × inverses. Looking back at the two-hand formulas,
(33) and (44), we see that these are just the very same divisor pairs that were previously hand-transforms of each other.

But, this exchange symmetry is broken by the presence of the vector product term (by vector product we mean
the product involving quaternion vectors, not to be confused with the cross product of vector alegbra). That
hand transform distinction has become reflected in presence of the symmetry breaking vector product term that
shows up in the one-hand representation, effectively manifesting a part of that characteristic which was previously
encapsulated in the two-hand format by the appearence of alternating hands among the divisors—the other part of
the characteristic is now manifest in the mixing of left side and right side divisions within the matrix.

The information, D4 = D′
1 and D3 = D′

2, previously captured by that check mark ′ , is now described by the
distinction between (V

↼−
Y )( V X) and (V X)( V

↼−
Y ), and relative side swapping ( i.e. D−1

1 · A11 7→ A11 · D
−1
1 while

D−1
4 ·A00 7→ D−1

4 ·A00 ), among the divisor pairs, so that when these vector factors commute, i.e. [V X,V
↼−
Y ] = 0, the

divisors fall into pairs of equal values, and the two-hand alternating difference is only then reflected in the permutation
order of the factors exhibited by this particular swapping of left division with right division for one (but not both)
member of each divisor pair. The differences, D−1

4 −D−1
1 , and D−1

3 −D−1
2 , in (86, 87), are given by the form;

ρY (X, Y )− ρX(Y, X) =
2(S(X + Y ))[(V X)(V

↼−
Y )− (V

↼−
Y )(V X)]

((S(X + Y ))2 + |V X|2 + |V Y |2)2 − 4|V X|2|V Y |2
(88)

But, although, generally, D4 6= D1, D3 6= D2, here, a more thorough inspection reveals, D1 = D2, D3 = D4, for the
right × inverse, and, D1 = D3, D2 = D4, for the left × inverse. The difference in the main diagonal divisors is the
same as that difference in the cross diagonal divisors, i.e. (D−1

4 −D−1
1 ) = ±(D−1

3 −D−1
2 ). And when [V X,V

↼−
Y ] = 0,

so that the expression (88) vanishes, all four divisors have the same value, D1 = D2 = D3 = D4. Let’s see why.
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Now, we can demonstrate that, S(
↼−
X ) = S(X) , |V (

↼−
X )|2 = |V (X)|2 , ∀ X = PQ, P, Q ∈HR, and, S(X+Y ) = S(X)+S(Y ).

So, we may replace the two scalars, S(X + Y ) and |V (X)|2 , in (84), by the equivalents, S(
↼−
X + Y ) and |V (

↼−
X )|2 ,

respectively, and similarily, replace, S(X + Y ) and |V (Y )|2 , in (85), by, S(X +
↼−
Y ) and |V (

↼−
Y )|2 . Then we can re-

place the two formula expressions with a single formula, and write, ρX(X, Y ) = ρ(
↼−
X, Y ), and ρY (X, Y ) = ρ(X,

↼−
Y , ). Where,

ρ(X, Y ) =
( (S(X + Y ))2(X∗ + Y ∗) + |V (X)|2(X∗ + Y ) + |V (Y )|2(X + Y ∗) + 2(S(X + Y ))(V (X))(V (Y ))

((S(X + Y ))2 + |V (X)|2 + |V (Y )|2)2 − 4|V (X)|2|V (Y )|2
(89)

Note that, ρ(Y, X) 6= ρ(X, Y ), because of the vector product term, V (X)V (Y ), in the numerator. However, observe
that, ρ(−X,−Y ) = −ρ(X, Y ), so the non-associative × product inverse can be simplified to have just two divisors,

right × inverse (33; 86):

(

B00 B01

B10 B11

)

=





A11 ·D
−1
1 −A01 ·D

−1
2

D−1
1 · (−A10) D−1

2 · A00



 =

(

A11 −A01

−A10 A00

)

×

(

D−1
1 0
0 D−1

2

)

(90)

where,

D−1
1 = ρ(A00A11,−A10A01), D−1

2 = ρ(−A10A01, A00A11).

The divisors can then be factored out and the formula represented by a twisted product multiplication between the
adjoint of the original matrix and a diagonal matrix of divisor values. For the right × inverse the diagonal divisor
matrix in (90) appears on the right, and can be compared, for example, with the similar diagonal divisor matrix
extraction for the right · inverse given previously in (40).

left × inverse (44; 87):

(

A00 A01

A10 A11

)

=





D−1
1 ·B11 −B01 ·D

−1
1

D−1
2 · (−B10) B00 ·D

−1
2



 =

(

D−1
1 0
0 D−1

2

)

×

(

B11 −B01

−B10 B00

)

(91)

where,

D−1
1 = ρ(−B10B01, B11B00), D−1

2 = ρ(B11B00,−B10B01).

For the left × inverse, the diagonal divisor matrix in (91) appears on the left, which can be compared again to the
left associative · inverse formula (46). These right and left side non-associative inverses can be verified by taking the
× product with the original matrix. In this case, expressions of the form on the l.h.s of (92) appear in the main
diagonal, while the cross diagonal terms easily vanish, and it can be shown from (89) that the equation (92) holds for
general X, Y , right hand quaternions, so the inverses can be readily confirmed.

X · ρ(X, Y ) + ρ(X, Y ) · Y = 1 (92)

X · ρ̂ + Y ′ · ρ̂ = 1̂ (93)

(X + Y ′) · ρ̂ = 1̂ (94)

ρ̂ =
1

X + Y ′
· 1̂ =

1̂

⊢ (X + Y ′)
(95)

If we start with this equation, (92), and apply our two-hand quaternion techniques, we can un-twist the expression,
and recover the equivalent bilateral factor two-hand form, (X + Y ′)−1, which we started out with, once again.

the properties of the quatro-quaternions:

A number of basic properties of the algebra of these quatro-quaternions can be easily demonstrated. The derivation
of the non-associative inverse, discussed above, is the most complicated of these elementary details to present. The
other fundamentals are listed in the table below, with some brief remarks and definitions to complete the initial
description of this algebraic system.
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Quatro-Quaternion Rules: ∀ a, b, c ∈ QQ ≡M[·,×](2, H); ∃ 0, 1, a−1, a−1
l× , a−1

r× ∈ QQ s.t.

rule + op · op × op

closure a + b ∈ QQ a · b ∈ QQ a× b ∈ QQ

associativity a + (b + c) = (a + b) + c a · (b · c) = (a · b) · c a× (b× c) 6= (a× b)× c

identity a + 0 = 0 + a = a a · 1 = 1 · a = a a× 1 = 1× a = a

zero 0 a · 0 = 0 · a = 0 a× 0 = 0× a = 0

inverse a + (−a) = (−a) + a = 0 a · a−1 = a−1 · a = 1 a× a−1
r× = a−1

l× × a = 1

commutativity a + b = b + a a · b 6= b · a a× b 6= b× a

left distributivity a · (b + c) = (a · b) + (a · c) a× (b + c) = (a× b) + (a× c)

right distributivity (a + b) · c = (a · c) + (b · c) (a + b)× c = (a× c) + (b × c)

mixed associativity a · (b× c) 6= (a · b)× c a× (b · c) 6= (a× b) · c

left alternativity a · (a · b) = (a · a) · b a× (a× b) 6= (a× a)× b

right alternativity (a · b) · b = a · (b · b) (a× b)× b 6= a× (b× b)

third alternativity a · (b · a) = (a · b) · a a× (b× a) 6= (a× b)× a

conjugation (a + b)∗ = a∗ + b∗ (a · b)∗ = b∗ · a∗ (a× b)∗ = b∗ × a∗

square norm N(a) = tr(a · a∗) = tr(a∗ · a) = tr(a× a∗) = tr(a∗ × a)

inverse formula = −a a−1 = (48); a−1
l× = (91); a−1

r× = (90)

conjugation: any quatro-quaternion, h ∈ QQ, can be written in the quadruple form, h = (A, B, C, D), which is taken
to be equivalent to the following matrix form with the particular parameter order; and a conjugation operator ∗ is
then defined by, h∗ = (A∗, C∗, B∗, D∗), equivalent to conjugating the quaternions and transposing the matrix form,

h =

(

A C

B D

)

, h∗ =

(

A∗ B∗

C∗ D∗

)

A, B, C, D ∈ H; h, h∗ ∈ QQ (96)

The quatro-quaternion system is a “ dual-product ” matrix algebra. It has a few notable structural properties.
First of all, the two products, · and × , share the same identity element, 1, which is the 2 × 2 unit matrix. But,
they have different multiplicative inverses. One product · is associative, while the other × is non-associative. Yet,
both these products are separately distributive over + addition. Neither product commutes, and h · h∗ 6= h∗ · h ,
h × h∗ 6= h∗ × h , but these matrix products all have the same trace, so we define that to be a metric square
norm. While octonions can be represented as a subalgebra restricted to the twisted product × , the QQ algebra
is not itself alternative in this operator. For o ∈ QQ, with octonion form, N(o) = 2|o|2, where |o|2 is the octonion norm.

the difference of squares is a matrix of commutators:
When o is a quatro-quaternion, with the same form of an octonion, then there’s also an interesting expression for the
difference of the non-associative and associative square products, for then o × o − o · o is a diagonal matrix of the
commutators [A, B] = (AB − BA) and [A, B∗] = (AB∗ − B∗A) .

o =

(

A −B∗

B A∗

)

, o× o− o · o =

(

0 AB∗ −B∗A

AB −BA 0

)

A, B ∈ H, o ∈ QQ (97)

Now [A,B] = 0 ⇐⇒ [A, B∗] = 0 , so if the quaternion parameters that define the octonion form commute, then
this difference of squares vanishes, and o × o = o · o, and these octonion form numbers then have identical squares
for associative and non-associative products. This is also obvious from the formal definitions, (1) and (2), which
differ only by simple twisting, so commuting parameters produce these equal squares. Conversely, however, if the
parameters non-commute, the two product operators must produce different squares. In the more general case, for
the quatro-quaternion quadruple, h =(A, B, C, D), the difference of squares is the matrix with three commutators,
[A, B], [B, C], [C, A], the last quaternion, D, not appearing in the result.

h =

(

A C

B D

)

, h× h− h · h =

(

BC − CB CA−AC

AB −BA 0

)

A, B, C, D ∈ H, h ∈ QQ (98)

That is, h× h− h · h = ( [B, C], [A, B], [C, A], 0 ).
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Multiplicative Inverses. Despite the fact that we write, a · a−1 = a−1 · a = 1, and a× a−1
r× = a−1

l× × a = 1, in the
above table, not every quatro-quaternion has an inverse. But, when a number has a right inverse it also has a left
inverse, and visa versa, for the same product, · or × . The right and left inverses are the same for the · product,
and generally different for the × product—but, in numbers with octonion form they are always identical.

norms. Since the QQ are 16-dimensional numbers, we define a metric norm to be the trace of the non-associative
(or associative) product of a number with its conjugate. This is the sum of 16 real number squares, 4 provided by
each of the four component quaternions in the quadruple, h =(A, B, C, D).

N(h) = tr(h · h∗) = tr(h× h∗) = |A|2 + |B|2 + |C|2 + |D|2 (99)

The octonions being represented by such quatro-quaternions are only 8-dimensional numbers, which we may write in
couple form, o = (A, B), or quadruple form, o = (A, B,−B∗, A∗). But, in either case, the number has two norms, its
quatro-quaternion metric norm, N(o) = 2|A|2 + 2|B|2, and the usual octonion norm, |o|2 = |A|2 + |B|2, which differ
by the factor of 2 because of the difference in the number of degrees of freedom in the two algebras. Despite the
fact that QQ numbers have norms and conjugates, we cannot write, h−1

× = h∗/N(h), since only when the number

has octonion form can we divide the conjugate by a norm to obtain the inverse, in this case, o−1
× = 2o∗/N(o).

But, the metric norm also does not have that nice law of the squares property, since, in general, N(h)N(g) 6= N(h×g).

a third product ?:
The missing fourth quaternion, D, in the expression h × h − h · h = ( [B, C], [A, B], [C, A], 0 ) , suggests to us
that the definition of our non-associative product × may, in some sense, be incomplete. There is obviously a
strange asymmetry here, which intuitively gives one the feeling that something is lacking in our algebra. Now,
we can represent octonions just fine with our matrix algebra, as it is, but it’s the quatro-quaternion algebra
itself that appears to require some kind of fixing. Intuition tells us that if this twisted product × produces this
kind of asymmetry in expressions, maybe there’s another twisted product

↼−
× that will give the complementary results.

× ≈

(

r+l l+r

l+r r+l

)

↼−
× ≈

(

l+r r+l

r+l l+r

)

On reviewing our definition for the twisted product, we observe that there’s one obvious alteration that complements
the definition we selected. There’s another way to modify the product expressions to obtain that balance of right and
left actions in the sums, and this alternative mirrors the twisting profile that exists in our definition. This suggests
that we add another twisted product

↼−
× to our algebra, with the complementary definition,

(

A00 A01

A10 A11

)

↼−
×

(

B00 B01

B10 B11

)

=

(

B00A00 + A01B10 A00B01 + B11A01

A10B00 + B10A11 B01A10 + A11B11

)

(100)

When we explore the results obtained from using this new product, we find it does indeed provide the missing link.
The 4th quaternion, D, re-appears, while it is the 1st quaternion, A, that is now absent from the difference of squares.

h =

(

A C

B D

)

, h
↼−
×h− h · h =

(

0 DC − CD

BD −DB CB −BC

)

A, B, C, D ∈ H, h ∈ QQ (101)

That is, h
↼−
×h− h · h = ( 0, [B, D], [D,C], [C, B] ).

This leads to the idea of a 3rd operator. However, a close inspection reveals that this operator is so very similar to
our existing twisted product in many respects that it is better considered simply a variation of it. The non-associative
product itself appears to have a duality, with two forms, one we might term “forward” and the other “reverse.” So
we use the reversing operator, ↼− , instead, to indicate that every pair of factors in the matrix product definition
for that operator be reversed. We can then write, ↼−· and

↼−
× , but shall leave exploration of these for a future work.

Suffice it to say, that if a, b ∈ QQ, have the Cayley-Dickson-(I) octonion form (5), then a× b also has this octonion

form and is constructed following the first product rule for couples defined in (4), but, although a
↼−
×b also has octonion

form (5), it is not constructed following the first rule, instead it follows the Cayley-Dickson (II)’s second product
rule for couples defined in (6), and with the factors in reverse order. In other words, if a =(A, B), b =(C, D), are the

octonion form quatro-quaternions, then, a× b =(A, B)× (C, D) ≡ (A, B)(C, D)I , but, a
↼−
×b =(A, B)

↼−
× (C, D) ≡ (C, D)(A, B)II .

So, the alternate product
↼−
× reverses the order of the factors and swaps the Cayley-Dickson processes from (I) to (II).
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scaling factors. Sometimes we’d like to multiply the quatro-quaternion by an overall scaling factor, so we need
appropriate definitions to establish this type of operation. Consider, for example, the expressions for the right (90),
and left (91), non-associative inverses. If the two divisors within the diagonal matrix are the same, i.e. D1 = D2,
we may write this as one value, D, and thus replace the diagonal matrix with a scaling parameter, like the ordinary
matrix algebra case given in (34). These formulas then become,

(

A00 A01

A10 A11

)−1

r×

=

(

A11 −A01

−A10 A00

)

×

(

1
D

0

0 1
D

)

=

(

A11 −A01

−A10 A00

)

×
1

D
(102)

(

A00 A01

A10 A11

)−1

l×

=

(

1
D

0

0 1
D

)

×

(

A11 −A01

−A10 A00

)

=
1

D
×

(

A11 −A01

−A10 A00

)

(103)

Note that, in writing the formulas this way, we are effectively extending the definition of multiplication to include the
product of a matrix with a “quaternion scaling factor,” in (102) and (103). To be consistent with our formal defini-
tions, (1) and (2), we must also allow two different methods for multiplication by such a scaling factor, one without
twisting and the other twisted in the very manner that an equivalent diagonal matrix of identical values would produce
if the factor were replaced with its diagonal matrix equivalent. This is necessary for a consistent use of the unit matrix.

Consider, A, B ∈ HR, I ∈ QQ, where I is the unit matrix;

A · I = A ·

 
1 0

0 1

!
=

 
A 0

0 A

!
=

 
1 0

0 1

!
·A = I · A (104)

A× I = A×

 
1 0

0 1

!
=

 
A 0

0 A

!
=

 
1 0

0 1

!
×A = I ×A (105)

(AB) × I = (AB) ×

 
1 0

0 1

!
=

 
AB 0

0 AB

!
=

 
1 0

0 1

!
× (AB) = I × (AB) (106)

A× (B × I) = A× (B ×

 
1 0

0 1

!
) = A×

 
B 0

0 B

!
=

 
A 0

0 A

!
×

 
B 0

0 B

!
=

 
AB 0

0 BA

!
=

 
A 0

0 A

!
×B = (I ×A)× B (107)

etc..then, note that the standard product · obeys the mixed associative law with ordinary quaternion multiplication,
i.e. (AB) · I = A · (B · I), but the twisted product × does not associate, (AB)× I 6= A× (B × I). So, one must pay
careful attention to the parentheses in the expression when using quaternion scaling factors with the × product.

Our scaling parameter must always be interchangeable with its corresponding diagonal matrix. Accordingly, we
define the two scaling products, · and × , for λ, α, β ∈ HR, h = (A, B, C, D) ∈ QQ, as follows;

λ · h = λ ·

(

A C

B D

)

=

(

λ 0

0 λ

)

·

(

A C

B D

)

=

(

λA λC

λB λD

)

(108)

h · λ =

(

A C

B D

)

· λ =

(

A C

B D

)

·

(

λ 0

0 λ

)

=

(

A λ Cλ

Bλ Dλ

)

(109)

λ× h = λ×

(

A C

B D

)

=

(

λ 0

0 λ

)

×

(

A C

B D

)

=

(

λA Cλ

λB Dλ

)

(110)

h× λ =

(

A C

B D

)

× λ =

(

A C

B D

)

×

(

λ 0

0 λ

)

=

(

Aλ Cλ

λB λD

)

(111)

In general, we have, (αβ)·h = α·(β ·h), and, h·(αβ) = (h·α)·β, but, (αβ)×h 6= α×(β×h), and, h×(αβ) 6= (h×α)×β.

Also, (h× λ)T = λ
↼−
×hT , and, (λ × h)T = hT ↼−

×λ. We could also write, λ · h = h↼−· λ, and, h · λ = λ↼−· h. However, for

the general transpose, (g × h)T = hT ↼−
× gT , and, (g · h)T = hT ↼−· gT , ∀ g, h ∈ QQ. Although we’d like to extend

the × product to quaternions, e.g. to give meaning to (α × β) × h etc.., the quaternions don’t have enough degrees
of freedom. However, we shall see later how we can extend the two-hand quaternion algebra with an × product.
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III. TWISTING AND PERCOLATION.

O × O ∼= M[×](8, R) ? : Our new matrix product allows us to represent octonions by 2 × 2 matrices over
the quaternions. But, the quaternions can also be represented by 2 × 2 matrices over the complex numbers, and
complex numbers represented by 2 × 2 matrices over reals. So, now we’d like to explore the 4 × 4 and 8 × 8 matrix
representations of octonions that result from combining these ideas. To do this, we first replace the 4 entries in the
2 × 2 quatro-quaternion matrix numbers with general 2 × 2 matrices over complex numbers. These 2 × 2 complex
number matrices are therefore not necessarily quaternions, because they span the entire set of M(2, C) numbers. This
substitution thus results in a simultaneous generalization of our previous quatro-quaternion algebra, in the process of
obtaining our matrix expansion to M[×](4, C). Then, when we replace the complex numbers by general matrices over
reals, spanning the entire set of numbers in M(2, R), we obtain yet a further generalization on expanding to 8 × 8.
And like in the case of the associative algebra of 4× 4 matrices over reals, which is equivalent to the tensor product
of Hamilton’s quaternion algebra with itself, H⊗H ∼= M(4, R), we conjecture that, O×O ∼= M[×](8, R), that is, this
final extended non-associative algebra is also a “product algebra” of the octonion algebra with itself.

So, how does the twisting action propagate through this matrix expansion?0BBBBB�a00 a01

a10 a11

a02 a03

a12 a13

a20 a21

a30 a31

a22 a23

a32 a33

1CCCCCA ·

0BBBBB�b00 b01

b10 b11

b02 b03

b12 b13

b20 b21

b30 b31

b22 b23

b32 b33

1CCCCCA =

0BBBBB�0�a00 a01

a10 a11

1A0�b00 b01

b10 b11

1A +

0�a02 a03

a12 a13

1A0�b20 b21

b30 b31

1A 0�a00 a01

a10 a11

1A0�b02 b03

b12 b13

1A +

0�a02 a03

a12 a13

1A0�b22 b23

b32 b33

1A0�a20 a21

a30 a31

1A0�b00 b01

b10 b11

1A +

0�a22 a23

a32 a33

1A0�b20 b21

b30 b31

1A 0�a20 a21

a30 a31

1A0�b02 b03

b12 b13

1A +

0�a22 a23

a32 a33

1A0�b22 b23

b32 b33

1A1CCCCCA(112)0BBBBB�a00 a01

a10 a11

a02 a03

a12 a13

a20 a21

a30 a31

a22 a23

a32 a33

1CCCCCA×

0BBBBB�b00 b01

b10 b11

b02 b03

b12 b13

b20 b21

b30 b31

b22 b23

b32 b33

1CCCCCA =

0BBBBB�0�a00 a01

a10 a11

1A0�b00 b01

b10 b11

1A +

0�b20 b21

b30 b31

1A0�a02 a03

a12 a13

1A 0�b02 b03

b12 b13

1A0�a00 a01

a10 a11

1A +

0�a02 a03

a12 a13

1A0�b22 b23

b32 b33

1A0�b00 b01

b10 b11

1A0�a20 a21

a30 a31

1A +

0�a22 a23

a32 a33

1A0�b20 b21

b30 b31

1A 0�a20 a21

a30 a31

1A0�b02 b03

b12 b13

1A +

0�b22 b23

b32 b33

1A0�a22 a23

a32 a33

1A1CCCCCA(113)
Note that there are two ways to expand our quatro-quaternions. We can use either M(2, C) or M[×](2, C) in

replacing the four quaternions. But, because the complex numbers commute, it doesn’t matter which version we
choose, we obtain the same effective 4 × 4 representation of the octonions. In equations (112) and (113), therefore,
we use M(2, C), so that the “ internal ” 2 × 2 matrix products use the standard matrix product formula defined in
(1), for both · and × expansions.

Then, working out the internal matrix products and removing the inside parentheses we obtain,0BBBBB�a00 a01

a10 a11

a02 a03

a12 a13

a20 a21

a30 a31

a22 a23

a32 a33

1CCCCCA ·

0BBBBB�b00 b01

b10 b11

b02 b03

b12 b13

b20 b21

b30 b31

b22 b23

b32 b33

1CCCCCA = ≈

0BBBBB�R+R+R+R R+R+R+R R+R+R+R R+R+R+R

R+R+R+R R+R+R+R R+R+R+R R+R+R+R

R+R+R+R R+R+R+R R+R+R+R R+R+R+R

R+R+R+R R+R+R+R R+R+R+R R+R+R+R

1CCCCCA (114)0BBBBB�a00b00 + a01b10 + a02b20 + a03b30 a00b01 + a01b11 + a02b21 + a03b31 a00b02 + a01b12 + a02b22 + a03b32 a00b03 + a01b13 + a02b23 + a03b33

a10b00 + a11b10 + a12b20 + a13b30 a10b01 + a11b11 + a12b21 + a13b31 a10b02 + a11b12 + a12b22 + a13b32 a10b03 + a11b13 + a12b23 + a13b33

a20b00 + a21b10 + a22b20 + a23b30 a20b01 + a21b11 + a22b21 + a23b31 a20b02 + a21b12 + a22b22 + a23b32 a20b03 + a21b13 + a22b23 + a23b33

a30b00 + a31b10 + a32b20 + a33b30 a30b01 + a31b11 + a32b21 + a33b31 a30b02 + a31b12 + a32b22 + a33b32 a30b03 + a31b13 + a32b23 + a33b33

1CCCCCA0BBBBB�a00 a01

a10 a11

a02 a03

a12 a13

a20 a21

a30 a31

a22 a23

a32 a33

1CCCCCA×

0BBBBB�b00 b01

b10 b11

b02 b03

b12 b13

b20 b21

b30 b31

b22 b23

b32 b33

1CCCCCA = ≈

0BBBBB�R+R+L+L R+R+L+L L+L+R+R L+L+R+R

R+R+L+L R+R+L+L L+L+R+R L+L+R+R

L+L+R+R L+L+R+R R+R+L+L R+R+L+L

L+L+R+R L+L+R+R R+R+L+L R+R+L+L

1CCCCCA (115)0BBBBB�a00b00 + a01b10 + b20a02 + b21a12 a00b01 + a01b11 + b20a03 + b21a13 b02a00 + b03a10 + a02b22 + a03b32 b02a01 + b03a11 + a02b23 + a03b33

a10b00 + a11b10 + b30a02 + b31a12 a10b01 + a11b11 + b30a03 + b31a13 b12a00 + b13a10 + a12b22 + a13b32 b12a01 + b13a11 + a12b23 + a13b33

b00a20 + b01a30 + a22b20 + a23b30 b00a21 + b01a31 + a22b21 + a23b31 a20b02 + a21b12 + b22a22 + b23a32 a20b03 + a21b13 + b22a23 + b23a33

b10a20 + b11a30 + a32b20 + a33b30 b10a21 + b11a31 + a32b21 + a33b31 a30b02 + a31b12 + b32a22 + b33a32 a30b03 + a31b13 + b32a23 + b33a33

1CCCCCA
The expansion of · in (114) results in the standard formula for the product of two 4 × 4 matrices. While, the

expansion of × in (115) has a little more going on than just twisting action. In this derived twisted product, the
entries in the modified matrix product replace the right action sums, r+r+r+r, with twisted products with the
profiles, r+r+l+l and l+l+r+r, and the pattern alternates every two columns or rows. But, the most important
modification is that some terms move around and change slots, while others are entirely new, and yet others dissappear.
The a03b30 term moves from the row col [0, 0] position, to the [1, 1] slot location, where it appears in the twisted form
b30a03. We refer to this phenomena as percolation. The percolating terms are marked in boldface.
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All the terms that percolate from another part of the matrix are also twisted in their new positions. There
are 64 terms in the product expression that can move around and change slots. Each slot takes 4 of these terms
to compute a sum. So, there are many ways to percolate a matrix product using a permutation modification.
However, the other type of percolation that occurs is the replacement of existing terms with new terms that
don’t even appear in the standard matrix product. Each term is constructed from a pair of a and b factors, and
there are 16 × 16 = 256 such possible terms to choose from (if we ignore the order of the factors), only 64 of
which are used at any one time in the product expression. The remaining 256 − 64 = 192 terms are available
to be swapped into the matrix to replace one or more of the existing terms there. This type of phenomena is
exhibited by the two consecutive a02b21 + a03b31 terms that vanish from slot [0, 1] of the standard matrix product,
and are replaced by b20a03 + b21a13 in the derived twisted product expression. Since new terms are created
and brought into the expression, annihilating the existing terms that they replace, we refer to this type of modi-
fication as generative percolation, in contrast to the permuting percolation that just causes existing terms to jump slots.

Clearly, armed with twisting and percolation, we have a good many ways to modify the definition of a matrix
product. But, the particular modifications that interest us here are those suggested by the need to satisfy the Cayley-
Dickson construction process. So, our definition of the × matrix operator, in this 4× 4 matrix algebra over complex
numbers, i.e. M[×](4, C), will be the expression given in (115). An octonion is then the 4× 4 matrix with the form,

o =











a −b∗ −c∗ −d∗

b a∗ d −c

c −d∗ a∗ b∗

d c∗ −b a











, a, b, c, d ∈ C (116)

The octonion conjugate o∗ is obtained by transposing this matrix and conjugating the complex numbers. We can
then show that, o× o∗ = (aa∗ + bb∗ + cc∗ + dd∗) · 1, where 1 is the unit 4× 4 matrix.

Using the M(2, R) to replace the complex numbers in (115), we obtain the corresponding derived twisted product
definition for the × operator for our 8× 8 matrix algebra, M[×](8, R). An octonion is then the 8× 8 matrix,

o =





























a −b −c −d −e −f −g −h

b a d −c f −e h −g

c −d a b g −h −e f

d c −b a h g −f −e

e −f −g −h a b c d

f e h −g −b a −d c

g −h e f −c d a −b

h g −f e −d −c b a





























a, b, c, d, e, f, g, h ∈ R (117)

The octonion conjugate o∗ is obtained by simply transposing this matrix. For reference, the definition of this
product is given in appendix a . It’s easily shown that, o × o∗ = (a2 + b2 + c2 + d2 + e2 + f2 + g2 + h2) · 1,
where 1 is the 8×8 unit matrix. These octonion matrix forms follow the Cayley-Dickson (I) construction defined in (4).

The above methods allow us to represent octonions by 4× 4 complex, and 8× 8 real matrices. However, we cannot
use the definitions for the derived twisted products given above for the general Cayley-Dickson algebras, since these
work only for octonions. If we wish to represent other algebras in the sequence higher than octonions, by 4× 4 and
8 × 8 matrices, over the corresponding previous algebras in the sequence, we must be careful to apply the original
twisted product definition for × given in (2) for all the internal matrices when constructing our matrix expansions.0BBBBB�a00 a01

a10 a11

a02 a03

a12 a13

a20 a21

a30 a31

a22 a23

a32 a33

1CCCCCA×

0BBBBB�b00 b01

b10 b11

b02 b03

b12 b13

b20 b21

b30 b31

b22 b23

b32 b33

1CCCCCA = ≈

0BBBBB�R+L+L+R L+R+R+L L+R+R+L R+L+L+R

L+R+R+L R+L+L+R R+L+L+R L+R+R+L

L+R+R+L R+L+L+R R+L+L+R L+R+R+L

R+L+L+R L+R+R+L L+R+R+L R+L+L+R

1CCCCCA (118)0BBBBB�a00b00 + b10a01 + b20a02 + a12b21 b01a00 + a01b11 + a03b20 + b21a13 b02a00 + a10b03 + a02b22 + b32a03 a01b02 + b03a11 + b23a02 + a03b33

b00a10 + a11b10 + a02b30 + b31a12 a10b01 + b11a11 + b30a03 + a13b31 a00b12 + b13a10 + b22a12 + a13b32 b12a01 + a11b13 + a12b23 + b33a13

b00a20 + a30b01 + a22b20 + b30a23 a21b00 + b01a31 + b21a22 + a23b31 a20b02 + b12a21 + b22a22 + a32b23 b03a20 + a21b13 + a23b22 + b23a33

a20b10 + b11a30 + b20a32 + a33b30 b10a21 + a31b11 + a32b21 + b31a33 b02a30 + a31b12 + a22b32 + b33a32 a30b03 + b13a31 + b32a23 + a33b33

1CCCCCA
The 4 × 4 matrix expansion shown in (118) results when using M[×](2, C) instead of the M(2, C) employed in

(115). This now has the correct form for all Cayley-Dickson algebras, not just octonions. Note the percolation is
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effectively the same, but a different twisting profile appears in the product expression. The twisting profile of some
percolated terms are also different. In the expansion (115) all percolated terms appear in left action (L) form “b.a”,
but here some are right action (R), “a.b”, also. If therefore one made a distinction between the “a.b” and “b.a” forms,
say because the a and b factors don’t commute, one could consider this a different percolation profile. But, in the
octonions case the twisting has no effect, so the percolation profile of (118) and (115) are effectively the same. There
are thus two ways to construct derived twisted products for the octonions, and the forms of the expressions look
different, when we maintain the order of the factors in the terms, but they result in the very same representation. The
standard product’s right action twisting profile, r+r+r+r, is modified now into the balanced patterns, r+l+l+r
and l+r+r+l, instead of the previous r+r+l+l and l+l+r+r found in (115). These differences all become
important when representing the higher dimensional algebras. However, twisting and percolation are the only
types of modification requried to describe the changes to the matrix product definitions.

We could “invent” other modifications, of course, like sign changes, making + signs into − signs, for example,
r+r+r+r into r−r−r+r, etc., or alter the number of terms that make up a sum in one or more slots of the
matrix, like changing, r+r+r+r into r+r+r, etc., or include conjugation operations in the expressions, like
A00B

∗
00 + (B10A01)

∗, etc.., or perhaps inverses of parameters instead, like A−1
00 B00 + B−1

10 A01, or even extend the
algebra with two-hand quaternions, like A′

00B00 + B′
10A01, including the hand changing operator, and so on. But

these are rather arbitrary, and are not generally suggested by the Cayley-Dickson construction (although one could
consider incorporating some particular combination of conjugation together with twisting and sign changes to mimic
the c-d process directly into the matrix product definition itself). The modifications we prefer are those that
meet both criteria of the principle of simplicity and being suggested by some natural process. For example, it is
reasonably obvious that it is impossible to represent octonions by 4 × 4 matrices over the complex numbers using
a matrix product constructed by twisting alone. That is, one must use some form of percolation. Although, it is
possible that there are several ways to percolate the matrix product expression to obtain alternate forms that can
represent these octonions. Since there are only a finite number of ways to twist and percolate, questions like this
can be computationally determined by an exhaustive search through the alternatives, when an easier corresponding
theoretical proof is unavailable.

matrix representations of octonion product algebras

We now have 2 × 2, 4 × 4, and 8 × 8 matrix representations of the octonions, O. But, in the process we’ve also
constructed generalized matrix algebras to facilitate these octonion representations, and these matrix algebras contain
more than just the simple octonion algebra. An inspection of the number of degrees of freedom involved in each case
suggests that these generalized matrix algebras may be isomorphic to product algebras formed with the octonion
algebra, that is, C × O ∼= M[×](2, H), H × O ∼= M[×](4, C), O × O ∼= M[×](8, R). So, let us then examine these ideas.

Conjecture: C × O ∼= M[×](2, H). i.e. the product algebra of the complex algebra with the octonion algebra is
isomorphic to the non-associative 2× 2 matrix algebra over the quaternions defined by the twisted product × given
in formal definition (2).
Proof:
Let an octonion be, o = oueu, with basis, eu, u = 0, 1, 2, ..., 7 , and complex number, z = x + iy. First we erect a
basis, using the 2× 2 matrix representation (5) for the octonion, then pick a linearly independent complex i number.

octonion:

o =

 
A −B∗

B A∗

!
=

 
a + bi + cj + dk −e + fi + gj + hk

e + fi + gj + hk a− bi− cj − dk

!
where, A = a + bi + cj + dk,

B = e + fi + gj + hk.
∈H.

= a

 
1 0

0 1

!
+ b

 
i 0

0 −i

!
+ c

 
j 0

0 −j

!
+ d

 
k 0

0 −k

!
+ e

 
0 −1

1 0

!
+ f

 
0 i

i 0

!
+ g

 
0 j

j 0

!
+ h

 
0 k

k 0

!
(119)

= ae0 + be1 + ce2 + de3 + ee4 + fe5 + ge6 + he7 a, b, c, d, e, f, g, h ∈ R

complex number:

z =

 
x + iy 0

0 x + iy

!
= x

 
1 0

0 1

!
+ y

 
i 0

0 i

!
(120)

= x + iy x, y ∈ R
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It’s trivial to show that, i2× = i × i = −1, where the unit 2 × 2 matrix is 1 = e0. So, the x + iy of (120) is
isomorphic to the complex numbers, and since the only octonion basis element with the quaternion unit i in the
main diagonal is e1, where the entries appear with opposite signs, there’s no way to construct the chosen complex i

number by a linear combination of the eight octonion basis elements. So, our i is linearly independent of the octonion
basis. By usual convention, we sometimes suppress the explicit depiction of the unit matrix, so that we can write,
x1 = x. Also, despite the fact that we have only defined · and × operations between quaternion scaling factors
and quatro-quaternions (108) − (111), when the scaling factor is a simple real number scalar there’s no difference
between the two product forms, and so, we now adopt the usual convention of representing this product by simple
juxtaposition of parameters: i.e. λ× eu = eu × λ = λ · eu = eu · λ = λeu = euλ, ∀ λ ∈ R , etc..

But, we need to establish that these eight 2 × 2 matrices in (119) do form an octonion basis. To confirm this, we
take the twisted product of pairs of matrices, eu× ev, u, v = 0, 1, 2, ..., 7, where we obtain the following product table:

× e0 e1 e2 e3 e4 e5 e6 e7

e0 e0 e1 e2 e3 e4 e5 e6 e7

e1 e1 −e0 e3 −e2 −e5 e4 −e7 e6

e2 e2 −e3 −e0 e1 −e6 e7 e4 −e5

e3 e3 e2 −e1 −e0 −e7 −e6 e5 e4

e4 e4 e5 e6 e7 −e0 −e1 −e2 −e3

e5 e5 −e4 −e7 e6 e1 −e0 −e3 e2

e6 e6 e7 −e4 −e5 e2 e3 −e0 −e1

e7 e7 −e6 e5 −e4 e3 −e2 e1 −e0

→

× 0 1 2 3 4 5 6 7

0 0 1 2 3 4 5 6 7

1 1 0̄ 3 2̄ 5̄ 4 7̄ 6

2 2 3̄ 0̄ 1 6̄ 7 4 5̄

3 3 2 1̄ 0̄ 7̄ 6̄ 5 4

4 4 5 6 7 0̄ 1̄ 2̄ 3̄

5 5 4̄ 7̄ 6 1 0̄ 3̄ 2

6 6 7 4̄ 5̄ 2 3 0̄ 1̄

7 7 6̄ 5 4̄ 3 2̄ 1 0̄

(121)

octonion product table in the M[×](2, H) representation. & compact form.

The left column eu multiply the top row ev and the result eu × ev is then shown in the body of table (121). A more
compact form of this same table is shown on the right, where we use only the index values of the eu basis elements,
with minus sign indicated by a bar over the index value. While there are several ways to erect octonion bases, and
thus construct variations of this product table (480 of them), there are always 7 quaternion triples in the basis set.
The table, as it stands, however, is not very revealing, unless one is already very familiar with octonion tables. So,
let us re-construct the basis using a more intuitive method, where we can easily see that we’ve got octonions. Since
octonions are created from reals by doubling three times, we only need 3 imaginary elements to describe the basis,
one new imaginary each time we double. Let’s call them, i, j, k.

o = A + kB A, B ∈ H (122)

A = z +
↼−
jw, B = u +

↼−
jv z, w, u, v ∈ C (123)

z = a + ib, w = c + id, u = e + if, v = g + ih a, b, c, d, e, f, g, h ∈ R (124)

∴ o = (a + ib) + (c + id)j + k(e + if) + k((g + ih)j) = a + bi + cj + d(ij) + ek + f(ki) + g(kj) + h(k(ij))(125)

Simple substitution reveals a basis set { 1, i, j, (ij), k, (ki), (kj), (k(ij)) } . The basis begins with
the complex number basis, { 1, i } , which has the property, i2 = −1. Then, the introduction of the j

breaks commutativity, and we have the quaternion basis, { 1, i, j, (ij) } , introducing the first quaternion
triple, {i, j, (ij)}, adding property, j2 = −1, and anti-commuting law, ij = −ji , from which we derive,
(ij)2 = (ij)(ij) = −(ij)(ji) = −i(jj)i = ii = −1 , using the still intact associativity law for quaternions, which
also gets us the remaining anti-commuting relations, (ij)i = −i(ij) = j , and, j(ij) = −(ij)j = i.

· 1 i j (ij) k (ki) (kj) (k(ij))

1 1 i j (ij) k (ki) (kj) (k(ij))

i i −1 (ij) −j −(ki) k −(k(ij)) (kj)

j j −(ij) −1 i −(kj) (k(ij)) k −(ki)

(ij) (ij) j −i −1 −(k(ij)) −(kj) (ki) k

k k (ki) (kj) (k(ij)) −1 −i −j −(ij)

(ki) (ki) −k −(k(ij)) (kj) i −1 −(ij) j

(kj) (kj) (k(ij)) −k −(ki) j (ij) −1 −i

(k(ij)) (k(ij)) −(kj) (ki) −k (ij) −j i −1

(126)

a three generators ijk octonion product table.
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This allows us to establish the upper quarter of the product table (126). Finally, the introduction of the third
element, k, breaks associativity, and gives us the remaining four imaginaries, { k, (ki), (kj), (k(ij)) } , completing
the octonion basis, and adding the defining property, k2 = −1. But, every two octonion imaginary basis elements
also form a quaternion triple with their product, so we get second and third triples, (k, i, (ki)) and (k, j, (kj)), with
anti-commuting laws, (ki) = −(ik), (kj) = −(jk) etc., and since the associative law still holds for such quaternion
triples we can reckon in the usual manner, for example, (ki)2 = (ki)(ki) = −(ik)(ki) = −i(kk)i = ii = −1 ; and
likewise, all other pairs anti-commute, xy = −yx, every imaginary has, x2 = −1, so we can immediately fill in the
product table’s remaining main diagonal elements, (ki)2 = (kj)2 = (k(ij))2 = −1, and effectively need only work
out the results for products above this diagonal. The anti-commutative and associative laws for these triples also tell
us that, (ki)k = −k(ki) = i, i(ki) = −(ki)i = k , and again that, (kj)k = −k(kj) = j, j(kj) = −(kj)j = k .

Since there are 7 imaginary basis units in the octonion, there are 7 × 6/2! = 21 ways to pick a pair of elements to
generate a triple, but each triple requires 3 pairs of elements (e.g. for its three anti-commuting relations), so there
are exactly 21/3 = 7 unique quaternion triples to be found. The fourth triple is, {k, (ij), (k(ij))}, which gives us the
relations, (k(ij))2 = −1, k(ij) = −(ij)k, and, (ij)(k(ij)) = −(k(ij))(ij) = k, (k(ij))k = −k(k(ij)) = (ij). But,
to progress any further we must now apply the modifications to the law of associativity.

1 : { e1, e2, e3} i, j, (ij)

2 : { e4, e1, e5} k, i, (ki)

3 : { e4, e2, e6} k, j, (kj)

4 : { e4, e3, e7} k, (ij), (k(ij))

5 : { e6, e5, e3} (kj), (ki), (ij)

6 : { e1, e7, e6} i, (k(ij)), (kj)

7 : { e2, e5, e7} j, (ki), (k(ij))

(127)

0 1 2 3 4 5 6 7

1 i j (ij) k (ki) (kj) (k(ij))

e0 e1 e2 e3 e4 e5 e6 e7

(128)

The three generators ijk obey the anti-associating law, x(yz) = −(xy)z, where the elements i, j, k, are assigned to
the variables x, y, z, in any order. In fact, any three different imaginary basis elements, that do not form a quaternion
triple, form an anti-associating triple like these generators. So, we now have, i(kj) = −i(jk) = (ij)k = −k(ij),
and, j(ki) = −j(ik) = (ji)k = −(ij)k = k(ij). Thus, two kinds of sets with 3 distinct elements co-exist among the
7 imaginaries: “associating triples” and “anti-associating triples.” If a triple is formed with two identical elements
the alternative laws apply—there is a left (first) alternative law, x(xy) = (xx)y, a right (second) alternative law,
(xy)y = x(yy), and a third alternative law, x(yx) = (xy)x—and we then have “alternative triples.” But, since every
two elements generate a quaternion triple, these alternative laws all follow from the anti-commuting and associative
laws of the quaternion subalgebras. Conversely, the alternative laws can be used instead to imply the existence of the
quaternion triples, and represent the weak form of associativity found in the octonion algebra.

{i, k, (ij)} =⇒ i(k(ij)) = −i((ij)k) = (i(ij))k = ((ii)j)k = −(jk) = (kj) (129)

(ij)(ki) = −(ij)(ik) = ((ij)i)k = −((ji)i)k = −(j(ii))k = (jk) = −(kj) (130)

{j, k, (ij)} =⇒ j(k(ij)) = −(ki) (131)

(ij)(kj) = (ki) (132)

{k, i, (kj)} =⇒ (ki)(kj) = −(ik)(kj) = i(k(kj)) = i((kk)j) = −(ij) (133)

{i, j, k} =⇒ (ki)(k(ij)) = −(ki)((ki)j) = −((ki)(ki))j = j (134)

(kj)(k(ij)) = −(kj)(k(ji)) = (kj)((kj)i) = ((kj)(kj))i = −i (135)

By identifying the appropriate anti-associating triples (given above on the left in (129) − (135)) we can resolve
the remaining products to complete table (126). To find the remaining quaternion triples, we need to make use of
the anti-associating law, e.g. from (133) we deduce, (kj)(ki) = −(ki)(kj) = (ij), so, {(kj), (ki), (ij)}, is a fifth
quaternion triple. The sixth and seventh quaternion triples are given in table (127). A comparison of the table (126)
and (121) shows they have the same form, when the label assignments given in (128) are made. We deliberately
designed our intuitive method to obtain the basis elements in corresponding sequence, hence the mystery twist in (123).
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The ijk basis for the quaternions substituted in (119) are “right-handed,” while the Cayley-Dickson (I) process
would give us a “left-hand” quaternion for our initial quaternion triple. Hence, the reverse operator avoids the
alternative of having to rearrange the table afterwards, just to recognise the match between (126) and (121).

Now that we have an octonion basis, and independent complex number basis, we take the product of the two bases
to expand the set of elements. With the complex i from (120) multiplying from the “left” side of the octonions, we
obtain the following i× eu set of matrices,

i× e0 i× e1 i× e2 i× e3 i× e4 i× e5 i× e6 i× e7

= = = = = = = = 
i 0

0 i

!  
−1 0

0 1

!  
k 0

0 k

!  
−j 0

0 −j

!  
0 −i

i 0

!  
0 −1

−1 0

!  
0 −k

k 0

!  
0 j

−j 0

! (136)

If we multiply i from the “right” side of the octonions, instead, we obtain

a slightly different set, eu × i, of 2× 2 matrices, since two of the products

anti-commute, i× e2 = −e2 × i , and, i× e3 = −e3 × i , while all the

others commute, i× eu = eu × i, ∀ u = 0, 1, 4, 5, 6, 7 . However, the 8

matrices in (136), together with the original 8 eu of (119) form a set of 16

linearly independent basis elements, completely representing M[×](2, H).

Therefore, we define a 16-dimension basis, βu, u = 0, 1, 2, . . . , 9, a, b, . . . , f,

by, βu = eu, βu+8 = i× eu, u = 0, 1, 2, ...,7, where the letters, a,b, . . . , f,

are now the numbers 10− 15 in “hexadecimal notation.”

The “compact form” product table for this C×O basis is on the right ⇒

C×O C⊗O
“product algebra” vs. “tensor product”

× 0 1 2 3 4 5 6 7 8 9 a b c d e f

0 0 1 2 3 4 5 6 7 8 9 a b c d e f

1 1 0̄ 3 2̄ 5̄ 4 7̄ 6 9 8̄ b ā d̄ c f̄ e

2 2 3̄ 0̄ 1 6̄ 7 4 5̄ ā b 8 9̄ e f̄ c̄ d

3 3 2 1̄ 0̄ 7̄ 6̄ 5 4 b̄ ā 9 8 f e d̄ c̄

4 4 5 6 7 0̄ 1̄ 2̄ 3̄ c d e f 8̄ 9̄ ā b̄

5 5 4̄ 7̄ 6 1 0̄ 3̄ 2 d c̄ f̄ e 9 8̄ b̄ a

6 6 7 4̄ 5̄ 2 3 0̄ 1̄ e f c̄ d̄ a b 8̄ 9̄

7 7 6̄ 5 4̄ 3 2̄ 1 0̄ f ē d c̄ b ā 9 8̄

8 8 9 a b c d e f 0̄ 1̄ 2̄ 3̄ 4̄ 5̄ 6̄ 7̄

9 9 8̄ b ā d̄ c f̄ e 1̄ 0 3̄ 2 5 4̄ 7 6̄

a a b̄ 8̄ 9 e f̄ c̄ d 2 3̄ 0̄ 1 6 7̄ 4̄ 5

b b a 9̄ 8̄ f e d̄ c̄ 3 2 1̄ 0̄ 7 6 5̄ 4̄

c c d ē f̄ 8̄ 9̄ a b 4̄ 5̄ 6 7 0 1 2̄ 3̄

d d c̄ f ē 9 8̄ b ā 5̄ 4 7̄ 6 1̄ 0 3̄ 2

e e f c d ā b̄ 8̄ 9̄ 6̄ 7̄ 4̄ 5̄ 2 3 0 1

f f ē d̄ c b̄ a 9 8̄ 7̄ 6 5 4̄ 3 2̄ 1̄ 0

(137)

16-dim C× O basis for M[×](2, H)

comparison with the tensor product:
C⊗O : The tensor product of two algebras, A and B, is the algebra, A⊗ B, with product defined by,

( a1 ⊗ b1 )( a2 ⊗ b2 ) = ( a1 ⊙A a2 )⊗ ( b1 ⊙B b2 ) a1, a2 ∈ A; b1, b2 ∈ B. (138)

where ⊙A is the product operator for the A-algebra, and ⊙B is the product operator for the B-algebra. In the
product of two elements of A⊗B the A elements do not multiply the B elements, whereas in our 16-dimensional basis
matrix representation C×O of M[×](2, H) the C omplex basis does actually combine with the O ctonion basis.

C⊗O M[×](2, H)

( 1⊗ eu )( 1⊗ ev ) = (1 × 1)⊗ (eu × ev) ⇐⇒ (1× eu)× (1× ev) = 1× (eu × ev) (139)

( 1⊗ eu )( i⊗ ev ) = (1 × i)⊗ (eu × ev) ⇐⇒ eu × (i× ev) = i× (eu × ev) (140)

( i⊗ eu )( 1⊗ ev ) = (i× 1)⊗ (eu × ev) ⇐⇒ (i× eu)× ev = i× (eu × ev) (141)

( i⊗ eu )( i⊗ ev ) = (i× i)⊗ (eu × ev) ⇐⇒ (i× eu)× (i× ev) = − (eu × ev) (142)

In order for these two products to be the same, the two algebras would have to have the same product table, despite
the fact that in the one case, C ⊗ O , parameters multiply only their own kind, remaining essentially an ordered
couple, a ⊗ b ≡ (a, b), a ∈ C, b ∈ O , while in the other, C × O ≡ M[×](2, H) , the parameters mix and merge
into one. Since we have proven that both the complex algebra and octonion algebra are represented by the twisted
product over the 2 × 2 matrices, we can now use this non-associative matrix × product for both multiplication
operators of these algebras, i.e. ⊙C ≡ × and ⊙O ≡ ×, when using this matrix representation, and the problem is
reduced to that of showing the equivalence of two different ways to multiply the three basis units, i, eu, ev, within the
M[×](2, H) algebra itself. Essentially, we’d have to show, (c1 × eu)× (c2 × ev) = (c1 × c2)× (eu × ev), for an algebra
known to be generally non-commutative and non-associative! This is equivalent to proving the identities in (139)-(142).
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Now, looking at (140), we easily see that when, v = 0, we obtain the requirement, eu × i = i× eu, and we already
know that this fails when, u = 2, 3. So, this simple counter example demonstrates that the two are not the same.
That is, the “product algebra”, C×O, differs from the “tensor product”, C⊗O.

But, the difference is only reflected in the sign changes between the

product tables. If we define a corresponding tensor product basis,

µv = 1⊗ ev, µv+8 = i⊗ ev, v = 0, 1, . . . , 7 , then construct the

product table for, C⊗O , we find the µuµv products all have

identical values to the βu × βv products shown in table (137) up to

a simple sign change. There are many sign changes, however, since

64 signs need to flip in this C×O table to obtain the corresponding

table for C⊗O. The values that flip sign are shown on the right ⇒

The dots “ . ” in the table indicate both the values and signs are

M[×](2, H) ∼= O + i×O. “Twisted Bi-Octonions”

C⊗O ∼= O + iO. “Bi-Octonions”

identical between the tables (143) and (137). Although octonion

tables can have many variations, with the seven quaternion triples

introducing various sign flips when exchanging r-h with l-h forms,

× 0 1 2 3 4 5 6 7 8 9 a b c d e f

0 . . . . . . . . . . . . . . . .

1 . . . . . . . . . . . . . . . .

2 . . . . . . . . a b̄ 8̄ 9 ē f c d̄

3 . . . . . . . . b a 9̄ 8̄ f̄ ē d c

4 . . . . . . . . . . . . . . . .

5 . . . . . . . . . . . . . . . .

6 . . . . . . . . . . . . . . . .

7 . . . . . . . . . . . . . . . .

8 . . . . . . . . . . . . . . . .

9 . . . . . . . . . . . . . . . .

a . . . . ē f c d̄ 2̄ 3 0 1̄ . . . .

b . . . . f̄ ē d c 3̄ 2̄ 1 0 . . . .

c . . e f . . ā b̄ . . 6̄ 7̄ . . 2 3

d . . f̄ e . . b̄ a . . 7 6̄ . . 3 2̄

e . . c̄ d̄ a b . . . . 4 5 2̄ 3̄ . .

f . . d c̄ b ā . . . . 5̄ 4 3̄ 2 . .

(143)

there’s no re-arrangement of basis elements that gets the tables to the C⊗ O differences from C×O

match, because the two structures, C⊗O and C×O, are so very different. So, even though the sign flips indicate an
obvious real linear map between the “products,” λ : βu × βv 7→ µuµv = λuvβu × βv, λuv ∈ {+1,−1} ⊂ R, there’s
no corresponding real linear map between the algebras, C×O 7→ C⊗O, that would facilitate this relationship.

Any h ∈M[×](2, H) can be written in terms of the C×O basis elements βu, e.g.,

h =

 
A C

B D

!
=

 
a0 + a1i + a2j + a3k c0 + c1i + c2j + c3k

b0 + b1i + b2j + b3k d0 + d1i + d2j + d3k

!
=

15X
u=0

λuβu A, B, C, D ∈ H, as, bs, cs, ds, λu ∈ R (144)

=
(a0 + d0)

2
β0 +

(a1 − d1)

2
β1 +

(a2 − d2)

2
β2 +

(a3 − d3)

2
β3 +

(b0 − c0)

2
β4 +

(b1 + c1)

2
β5 +

(b2 + c2)

2
β6 +

(b3 + c3)

2
β7 (145)

+
(a1 + d1)

2
β8 −

(a0 − d0)

2
β9 +

(a3 + d3)

2
βA −

(a2 + d2)

2
βB +

(b1 − c1)

2
βC −

(b0 + c0)

2
βD +

(b3 − c3)

2
βE −

(b2 − c2)

2
βF

= z0 × e0 + z1 × e1 + z2 × e2 + z3 × e3 + z4 × e4 + z5 × e5 + z6 × e6 + z7 × e7 , zj ∈ C (146)

where,

z0 =
1

2
(a0 + d0) +

1

2
(a1 + d1)i, z1 =

1

2
(a1 − d1)−

1

2
(a0 − d0)i, z2 =

1

2
(a2 − d2) +

1

2
(a3 + d3)i, z3 =

1

2
(a3 − d3)−

1

2
(a2 + d2)i

z4 =
1

2
(b0 − c0) +

1

2
(b1 − c1)i, z5 =

1

2
(b1 + c1) −

1

2
(b0 + c0)i, z6 =

1

2
(b2 + c2) +

1

2
(b3 − c3)i, z7 =

1

2
(b3 + c3) −

1

2
(b2 − c2)i

While this number can also be written, h =
∑

zu × eu, with complex number coefficients on the 8-dimensional
octonion basis, (146), this is not the usual “bi-octonion,” because the complex coefficients do not commute with
all the octonion basis elements here. The product between the complex coefficients and the octonion basis makes
use of the special non-associative twisted × product. So, if anything, these restricted quatro-quaternion numbers
might be called, alternatively, the “twisted bi-octonions.” The ordinary “bi-octonions” are represented by the tensor
product C ⊗ O, which we’ve just seen has a different structure from our twisted version, C × O. Nevertheless,
although our non-associative matrix algebra M[×](2, H) is not a tensor product, it is represented by the product of the
two algebras, so we call this C×O construction, simply, a “product algebra.” We can then write, C×O ∼= M[×](2, H).
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Conjecture: H × O ∼= M[×](4, C). i.e. the product algebra of the quaternion algebra with the octonion algebra
is isomorphic to the non-associative 4 × 4 matrix algebra over the complex numbers defined by the derived twisted

product × given in (115).

—this conjecture turned out to be false, there being no quaternion triples found outside the octonion basis.

All the triples that have anti-commuting pairs form another type of four dimensional hypercomplex number,
which we identified in our previous Hexpe paper [PJ2] [2−] and labeled there “alternating complex numbers.”
While there are triples, ijk , where all pairs anti-commute, they do not follow the “cyclical” pattern,
ij = −ji = k, ki = −ik = j jk = −kj = i, , characteristic of quaternions, instead they follow,
ij = −ji = k, ki = −ik = −j jk = −kj = i, , which is an “alternating” pattern, with a, ki = −j,
left-hand turn, alternating with two right-hand turns, ij = +k and jk = +i. Moreover, while, i2 = j2 = k2 = −1,
for quaternions, these numbers have squares alternating between +1 and −1, with, i2 = −j2 = k2 = +1. Since,
the alternating complex numbers seem to play a prominant role here, we shall introduce an official symbol[3], Ḧ, for

these numbers. The eight basis units, {±1,±i,±j,±k}, for Ḧ, form the group D4, the fourth dihedral group, which
is the group of symmetries of the 2-space square. This is one of the five groups of order eight, with the set of basis
quaternions, Q ≡ {±1,±i,±j,±k} ⊂ H, being another—these two groups, Q and D4, are the only “non-abelian”
groups among the five, the other three are all abelian. We then replace our conjecture with the following alternative.

Conjecture: Ḧ × O ∼= M[×](4, C). i.e. the product algebra of the alternating complex algebra with the octonion
algebra is isomorphic to the non-associative 4 × 4 matrix algebra over the complex numbers defined by the derived
twisted product × given in (115).

Proof:

Let an octonion be, o = oueu, with basis, eu, u = 0, 1, 2, ..., 7, and alternating complex number, α = w + ix+ jy +kz.
First we erect a basis, using the 4× 4 matrix representation (116) for the octonion, then pick an independent ijk.

o =

0BBB�a −b∗ −c∗ −d∗

b a∗ d −c

c −d∗ a∗ b∗

d c∗ −b a

1CCCA =

0BBB�a0 + ia1 −b0 + ib1 −c0 + ic1 −d0 + id1

b0 + ib1 a0 − ia1 d0 + id1 −c0 − ic1

c0 + ic1 −d0 + id1 a0 − ia1 b0 − ib1

d0 + id1 c0 − ic1 −b0 − ib1 a0 + ia1

1CCCA a, b, c, d ∈ C (147)

= a0

0BBB�+1 0 0 0

0 +1 0 0

0 0 +1 0

0 0 0 +1

1CCCA+ a1

0BBB�+i 0 0 0

0 −i 0 0

0 0 −i 0

0 0 0 +i

1CCCA+ b0

0BBB� 0 −1 0 0

+1 0 0 0

0 0 0 +1

0 0 −1 0

1CCCA+ b1

0BBB� 0 +i 0 0

+i 0 0 0

0 0 0 −i

0 0 −i 0

1CCCA (148)

+ c0

0BBB� 0 0 −1 0

0 0 0 −1

+1 0 0 0

0 +1 0 0

1CCCA+ c1

0BBB� 0 0 +i 0

0 0 0 −i

+i 0 0 0

0 −i 0 0

1CCCA+ d0

0BBB� 0 0 0 −1

0 0 +1 0

0 −1 0 0

+1 0 0 0

1CCCA+ d1

0BBB� 0 0 0 +i

0 0 +i 0

0 +i 0 0

+i 0 0 0

1CCCA
= a0e0 + a1e1 + b0e2 + b1e3 + c0e4 + c1e5 + d0e6 + d1e7 (149)

α = w

0BBB�+1 0 0 0

0 +1 0 0

0 0 +1 0

0 0 0 +1

1CCCA+ x

0BBB� 0 +i 0 0

−i 0 0 0

0 0 0 −i

0 0 +i 0

1CCCA+ y

0BBB�+i 0 0 0

0 −i 0 0

0 0 +i 0

0 0 0 −i

1CCCA+ z

0BBB� 0 +1 0 0

+1 0 0 0

0 0 0 +1

0 0 +1 0

1CCCA (150)

= w + xi + yj + zk w, x, y, z ∈ R, α ∈ Ḧ (151)

This octonion basis has four real 4× 4 matrices, and four imaginary matrices. An independent ijk triple can be
found by selecting two octonion basis matrices, modifying the ± signs on the entries to obtain independent matrices,
then checking that their product is also independent of the original eight, and that together with their product they
form a triple with the right properties defining an alternating complex number. One such triple is presented in (150).
It is easily verified that this triple is associative under the twisted × product, i.e. a × (b × c) = (a × b) × c, for
all assignments of {i, j, k} to the variables, {a, b, c}, despite the otherwise non-associative nature of the × product.
So, the ± unit basis elements of the alternating complex number do actually form a non-abelian “group” under

http://www.hypercomplex.com/research/emgrav/hypcx-20060129a.pdf
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the twisted × product. This means that we have these associative subalgebras within the M[×](4, C) non-associative
algebra, similar to the associative quaternion subalgebras that exist within that part formed from the octonion algebra.

× 1 i j k

1 1 i j k

i i 1 k j

j j −k −1 i

k k −j −i 1

× 1 i j k

1 1 i j k

i i −1 k −j

j −j −k −1 i

k k j −i −1

(152)

Ḧ — alternating complex number vs H — hamilton’s quaternions

product table for the group D4 product table for the group Q

On multiplying the {1, i, j, k} basis elements of (150 − 151) we can confirm they produce the product table
shown in (152) for the alternating complex number. This can be compared to the corresponding non-abelian 4-dim
hypercomplex number product table for Hamilton’s Quaternions shown on the right. Using the twisted × product to
multiply the eight octonion basis matrices (148− 149), eu, u = 0, 1, 2, . . . , 7, we also obtain the following table;

× e0 e1 e2 e3 e4 e5 e6 e7

e0 e0 e1 e2 e3 e4 e5 e6 e7

e1 e1 −e0 −e3 e2 −e5 e4 e7 −e6

e2 e2 e3 −e0 −e1 −e6 −e7 e4 e5

e3 e3 −e2 e1 −e0 −e7 e6 −e5 e4

e4 e4 e5 e6 e7 −e0 −e1 −e2 −e3

e5 e5 −e4 e7 −e6 e1 −e0 e3 −e2

e6 e6 −e7 −e4 e5 e2 −e3 −e0 e1

E7 e7 e6 −e5 −e4 e3 e2 −e1 −e0

→

× 0 1 2 3 4 5 6 7

0 0 1 2 3 4 5 6 7

1 1 0̄ 3̄ 2 5̄ 4 7 6̄

2 2 3 0̄ 1̄ 6̄ 7̄ 4 5

3 3 2̄ 1 0̄ 7̄ 6 5̄ 4

4 4 5 6 7 0̄ 1̄ 2̄ 3̄

5 5 4̄ 7 6̄ 1 0̄ 3 2̄

6 6 7̄ 4̄ 5 2 3̄ 0̄ 1

7 7 6 5̄ 4̄ 3 2 1̄ 0̄

(153)

octonion product table in the M[×](4, C) representation. & compact form.

At first glance, table (153) for the M[×](4, C) representation, and table (121) for the M[×](2, H) representation, look
different. However, a simple re-arrangement shows they are the same table. If we swap labels, e2 and e3, and swap
labels, e6 and e7, in (153), we obtain table (121). Thus, our match is obtained by the corresponding label assignments;

0 1 2 3 4 5 6 7

1 i j (ij) k (ki) (kj) (k(ij))

e0 e1 e3 e2 e4 e5 e7 e6

(154)

The basis elements that require swapping all involve that same j from the three generator ijk octonion table (126),
on which we previously imposed the special “mystery twist” (123) to get things to match before without re-arranging
table elements. Now, we essentially have to undo that twist to see the equivalence between the tables. We could have
avoided all this re-arranging by simply taking the ijk quaternion basis introduced in (119) to be “left-handed,” at
the outset, when computing table (121). Then we wouldn’t need to employ the (123) reverse operator, to get things
to match before, and wouldn’t have to undo that twist to see the equivalence here again. But, this way we highlight
one of the characteristics of octonions, that the 7 quaternion triples may appear in either r-h or l-h format, and thus
create different looking tables that are nevertheless “isomorphically” the same. Now that we have an octonion basis,
and linearly independent alternating complex number triple, ijk, we combine them to expand the basis.

i× e0 i× e1 i× e2 i× e3 i× e4 i× e5 i× e6 i× e70BBBBB� 0 +i 0 0

−i 0 0 0

0 0 0 −i

0 0 +i 0

1CCCCCA0BBBBB� 0 +1 0 0

+1 0 0 0

0 0 0 −1

0 0 −1 0

1CCCCCA0BBBBB�+i 0 0 0

0 +i 0 0

0 0 +i 0

0 0 0 +i

1CCCCCA0BBBBB�−1 0 0 0

0 +1 0 0

0 0 +1 0

0 0 0 −1

1CCCCCA0BBBBB� 0 0 0 −i

0 0 +i 0

0 −i 0 0

+i 0 0 0

1CCCCCA0BBBBB� 0 0 0 −1

0 0 −1 0

0 −1 0 0

−1 0 0 0

1CCCCCA0BBBBB� 0 0 +i 0

0 0 0 +i

−i 0 0 0

0 −i 0 0

1CCCCCA0BBBBB� 0 0 +1 0

0 0 0 −1

+1 0 0 0

0 −1 0 0

1CCCCCA
j × e0 j × e1 j × e2 j × e3 j × e4 j × e5 j × e6 j × e70BBBBB�+i 0 0 0

0 −i 0 0

0 0 +i 0

0 0 0 −i

1CCCCCA0BBBBB�−1 0 0 0

0 −1 0 0

0 0 +1 0

0 0 0 +1

1CCCCCA0BBBBB� 0 −i 0 0

−i 0 0 0

0 0 0 −i

0 0 −i 0

1CCCCCA0BBBBB� 0 −1 0 0

+1 0 0 0

0 0 0 −1

0 0 +1 0

1CCCCCA0BBBBB� 0 0 −i 0

0 0 0 +i

+i 0 0 0

0 −i 0 0

1CCCCCA0BBBBB� 0 0 −1 0

0 0 0 −1

−1 0 0 0

0 −1 0 0

1CCCCCA0BBBBB� 0 0 0 +i

0 0 +i 0

0 −i 0 0

−i 0 0 0

1CCCCCA0BBBBB� 0 0 0 +1

0 0 −1 0

0 −1 0 0

+1 0 0 0

1CCCCCA (155)

k × e0 k × e1 k × e2 k × e3 k × e4 k × e5 k × e6 k × e70BBBBB� 0 +1 0 0

+1 0 0 0

0 0 0 +1

0 0 +1 0

1CCCCCA0BBBBB� 0 −i 0 0

+i 0 0 0

0 0 0 −i

0 0 +i 0

1CCCCCA0BBBBB�+1 0 0 0

0 −1 0 0

0 0 +1 0

0 0 0 −1

1CCCCCA0BBBBB�+i 0 0 0

0 +i 0 0

0 0 −i 0

0 0 0 −i

1CCCCCA0BBBBB� 0 0 0 −1

0 0 −1 0

0 +1 0 0

+1 0 0 0

1CCCCCA0BBBBB� 0 0 0 +i

0 0 −i 0

0 −i 0 0

+i 0 0 0

1CCCCCA0BBBBB� 0 0 −1 0

0 0 0 +1

+1 0 0 0

0 −1 0 0

1CCCCCA0BBBBB� 0 0 +i 0

0 0 0 +i

+i 0 0 0

0 +i 0 0

1CCCCCA
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The 24 matrices in (155), together with the previous 8 octonion basis matrices in (148), form a complete set of 32
linearly independent basis matrices that represent the M[×](4, C) algebra. To see that they are linearly independent
matrices, notice that they all fall into groups of 4 where the matrix entries are in the same positions, just with
differing signs; e.g. e1, i×e2, j×e0, k×e3 , all have the complex i unit along the main diagonal. If these four were
linearly dependent, there would then exist real parameters, λu , for which λ0e1 +λ1i× e2 + λ2j× e0 +λ3k× e3 = 0,
leading to the system of four simultaneous equations,

+λ0 + λ1 + λ2 + λ3 = 0

−λ0 + λ1 − λ2 + λ3 = 0 (156)

−λ0 + λ1 + λ2 − λ3 = 0

+λ0 + λ1 − λ2 − λ3 = 0

which, however, only have solution, λ0 = λ1 = λ2 = λ3 = 0. So, all the 32 matrices in this basis set for M[×](4, C) are

linearly independent. Hence, Ḧ × O ∼= M[×](4, C) , and the non-associative 4 × 4 matrix algebra over the complex
numbers is isomorphic to the “product algebra” of the alternating complex algebra and the octonion algebra.

Any number h ∈M[×](4, C) can be represented by this 32-dim Ḧ×O basis,

h =

7
∑

u=0

λu,0eu +

7
∑

u=0

λu,1i× eu +

7
∑

u=0

λu,2j × eu +

7
∑

u=0

λu,3k × eu (157)

=
7
∑

u=0

αu × eu (158)

where,

αu = λu,0 + λu,1i + λu,2j + λu,3k , λu,s ∈ R, αu ∈ Ḧ (159)

But, notice again, that the product algebra, Ḧ × O, is different from the corresponding tensor product, Ḧ⊗ O. The
next natural question to ponder, is whether there is any relationship between between Ḧ×O and H⊗O. However, the
ijk imaginary units in quaternions have an interchangeable symmetry that would suggest the tensor product show
no special preference for i, j or k. While, an asymmetry is easily seen in the units of Ḧ. When we reverse the order
of factors, these products in (155) fall into sets, of 2 and 6, that commute and anti-commute.

i : eu × i = i× eu, u = 0, 2. eu × i = −i× eu, u = 1, 3, 4, 5, 6, 7.

j : eu × j = j × eu, u = 0, 1, 4, 5, 6, 7. eu × j = −j × eu, u = 2, 3.

k : eu × k = k × eu, u = 0, 3, 4, 5, 6, 7. eu × k = −k × eu, u = 1, 2.

(160)

But, the pattern “alternates” among the ijk units, with i commuting 2 and anti-commuting 6, while j and k

reverse this enumeration, commuting 6 and anti-commuting 2, instead. Thus, this singles out one unit, i, as special
(although, initially one might think j should be the special unit), and indicates Ḧ×O is also different from H⊗O.

hexpe numbers. The 32 basis matrices in this set form two distinct subsets, of 16 real 4 × 4 matrices, and 16
purely imaginary 4× 4 matrices. The set of 4× 4 real matrices happen to be identical to that which forms the basis
set for the hexpe numbers, and is a real matrix “×” subalgebra of the M[×](4, C), which we shall label M[×](4, R).

E IR JR KR IL JL KL IM JM KM IA JA KA IZ JZ KZ

e0 j × e3 k× e6 k× e4 e2 e4 e6 j × e1 −k× e2 i× e3 i× e1 i× e7 j × e7 −k× e0 j × e5 i× e5

(161)

The Hexpentaquaternion basis, Xb = ±{E, IR, JR, KR, IL, JL, KL, IM , JM , KM , IA, JA, KA, IZ , JZ , KZ}, is closed
under the twisted × product. So, we may now extend this associative algebra by including the non-associative
product. The 16-dimensional “dual-product” Hexpentaquaternion algebra, (Xn, ·,×), is then a subalgebra of the
M[·,×](4, C), and we may alternatively refer to it as M[·,×](4, R). The correspondence, between the previously defined

hexpe basis elements—[PJ2] [2−] (page 59, Table T.1)—and the 16 real basis matrices given here, is shown in table (161).

The remaining set of 16 imaginary 4 × 4 matrices can all be re-written iM , where i is the ordinary complex
imaginary unit, and M is a real 4× 4 matrix, with M ∈ Xb, once again.

http://www.hypercomplex.com/research/emgrav/hypcx-20060129a.pdf
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the twisted × product inverse for M[×](4, C)

We have seen how to construct twisted product inverse matrices for M[×](2, H). But, now we have generalized the
algebra in expanding to 4× 4, and need to re-consider the inverse again. Fortunately, this time, all our matrix entries
commute. But, we do still need to take into account the effects of percolation. Consider the following 4× 4 equation,0BBBBB�a00 a01 a02 a03

a10 a11 a12 a13

a20 a21 a22 a23

a30 a31 a32 a33

1CCCCCA×

0BBBBB�b00 b01 b02 b03

b10 b11 b12 b13

b20 b21 b22 b23

b30 b31 b32 b33

1CCCCCA =

0BBBBB�1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

1CCCCCA aij , bij ∈ C (162)

where, [aij ], is the known, and, [bij ], the unknown. We can expand this matrix expression and re-arrange the resulting
equations into an equivalent form expressible by the standard matrix algebra. But, this time we need 16-dim arrays.
It helps to see the results of the × product side by side with that for the standard · product, when both are written
out and re-expressed in the 16-dim format. The following two equations show this comparison.0BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB�

a00 a01 a02 a03

a10 a11 a12 a13

a20 a21 a22 a23

a30 a31 a32 a33

0 0 0

0

a00 a01 a02 a03

a10 a11 a12 a13

a20 a21 a22 a23

a30 a31 a32 a33

0 0

0 0

a00 a01 a02 a03

a10 a11 a12 a13

a20 a21 a22 a23

a30 a31 a32 a33

0

0 0 0

a00 a01 a02 a03

a10 a11 a12 a13

a20 a21 a22 a23

a30 a31 a32 a33

1CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCA

0BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB�

b00

b10

b20

b30

b01

b11

b21

b31

b02

b12

b22

b32

b03

b13

b23

b33

1CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCA
=

0BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB�

1

0

0

0

0

1

0

0

0

0

1

0

0

0

0

1

1CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCA
(163)

The effects of percolation are clearer when viewed in terms of the standard matrix transformation equations. Above we
have the standard associative · product for M(4, C). Below, the non-associative twisted × product for M[×](4, C).
The percolating entities are marked in boldface. The diagonal form is modified by the inclusion of satellite matrices.0BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB�

a00 a01 a02 .

a10 a11 . a02

a20 . a22 a23

. a20 a32 a33

. . a12 .

. . . a12

a30 . . .

. a30 . .

0 0

. . a03 .

. . . a03

a21 . . .

. a21 . .

a00 a01 a13 .

a10 a11 . a13

a31 . a22 a23

. a31 a32 a33

0 0

0 0

a00 . a02 a03

. a00 a12 a13

a20 a21 a22 .

a30 a31 . a22

a10 . . .

. a10 . .

. . a32 .

. . . a32

0 0

a01 . . .

. a01 . .

. . a23 .

. . . a23

a11 . a02 a03

. a11 a12 a13

a20 a21 a33 .

a30 a31 . a33

1CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCA

0BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB�

b00

b10

b20

b30

b01

b11

b21

b31

b02

b12

b22

b32

b03

b13

b23

b33

1CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCA
=

0BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB�

1

0

0

0

0

1

0

0

0

0

1

0

0

0

0

1

1CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCA
(164)

[In the square array, the dots “ · ” are isolated zeros, and the 0’s are entire 4× 4 matrices of zeros].

The main feature of note, is that, whereas, in the standard · product above, the 4 × 1 column vectors separate,
each effectively producing their own independent matrix equation, in the non-associative × product below, two 4× 1
column vectors are coupled together into linked pairs, that do not separate, and are not generally separable.
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The first two columns in the [bij ] matrix, therefore, form the following system of coupled 4-dim matrix equations,
where the general transformation [aij ] matrix is mangled by the percolating action, and split apart into two unequally
distributed matrices. The sparse matrix we refer to as the “satellite matrix,” the denser simply a “percolated matrix.”0BBB�a00 a01 a02 .

a10 a11 . a02

a20 . a22 a23

. a20 a32 a33

1CCCA0BBB�b00

b10

b20

b30

1CCCA+

0BBB� . . a12 .

. . . a12

a30 . . .

. a30 . .

1CCCA0BBB�b01

b11

b21

b31

1CCCA =

0BBB� 1

0

0

0

1CCCA (165)0BBB� . . a03 .

. . . a03

a21 . . .

. a21 . .

1CCCA0BBB�b00

b10

b20

b30

1CCCA+

0BBB�a00 a01 a13 .

a10 a11 . a13

a31 . a22 a23

. a31 a32 a33

1CCCA0BBB�b01

b11

b21

b31

1CCCA =

0BBB� 0

1

0

0

1CCCA (166)

The satellite matrices remain associated with the same pair of percolated matrices with which they share a common
origin. The four cross diagonal elements, in this case, are ripped out of the original general matrix, and used to populate
the satellites. The remaining percolated matrix bodies also undergo other minor modifications shown in boldface.
But, if we associate each satellite matrix with its percolated partner that shares the same horizontal positioning in the
(164) square array, we then have four percolated, A1, A2, A2, A4, and their four corresponding satellites, S1, S2, S3, S4,
making up the system of equations. The first paired system of equations can then be written,

A1b1 + S1b2 = c1 b1 = (S−1
1 A1 −A−1

2 S2)
−1(S−1

1 c1 −A−1
2 c2) (167)

S2b1 + A2b2 = c2 b2 = (A−1
1 S1 − S−1

2 A2)
−1(A−1

1 c1 − S−1
2 c2)

where, b1, b2, b3, b4, are the corresponding 4×1 column vectors from the [bij ] matrix, and c1, c2, c3, c4, for this problem,
are the related parts of the unit matrix. Since we’re dealing with ordinary matrix algebra over complex numbers,
the standard methods for inverting a matrix applies, and we can write the solution for the pair (b1, b2) in terms of
the inverted matrices and their products as shown on the right in (167). These equations uncouple when the four
entries in the satellite matrices vanish, which occurs when, a12 = a21 = a03 = a30 = 0, in the original general matrix.
However, there’s still an effect due to percolation owing to the other off-diagonal modifications.0BBB�a00 . a02 a03

. a00 a12 a13

a20 a21 a22 .

a30 a31 . a22

1CCCA0BBB�b02

b12

b22

b32

1CCCA+

0BBB�a10 . . .

. a10 . .

. . a32 .

. . . a32

1CCCA0BBB�b03

b13

b23

b33

1CCCA =

0BBB� 0

0

1

0

1CCCA (168)0BBB�a01 . . .

. a01 . .

. . a23 .

. . . a23

1CCCA0BBB�b02

b12

b22

b32

1CCCA+

0BBB�a11 . a02 a03

. a11 a12 a13

a20 a21 a33 .

a30 a31 . a33

1CCCA0BBB�b03

b13

b23

b33

1CCCA =

0BBB� 0

0

0

1

1CCCA (169)

The remaining pair of column vectors, (b2, b3), can be determined in a similar manner. Note that the percolating
action exhibits a different pattern here, which is, however, somewhat complementary to that in the first pair.

A3b3 + S3b4 = c3 b3 = (S−1
3 A3 −A−1

4 S4)
−1(S−1

3 c3 −A−1
4 c4) (170)

S4b3 + A4b4 = c4 b4 = (A−1
3 S3 − S−1

4 A4)
−1(A−1

3 c3 − S−1
4 c4)

When all of the matrix entries that populate satellites vanish, in the original general matrix, we obtain a special
matrix (171) that looks somewhat like spaghetti. In this case, all the four column 4×1 vectors from the [bij ] decouple,
and the system of equations partitions into four individual matrix problems just like in the standard matrix algebra.0BBB�a00 a01 a02 a03

a10 a11 a12 a13

a20 a21 a22 a23

a30 a31 a32 a33

1CCCA −→

0BBB�a00 · a02 ·

· a11 · a13

a20 · a22 ·

· a31 · a33

1CCCA (171)

general matrix spaghetti matrix
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We can then ask sensible questions like “What are the non-associative twisted product eigenvalues and eigenvectors
for a spaghetti matrix?”, because, 4 × 1 column vectors can once again be treated as isolated objects that undergo
individual transformations. But, notice that, if the original matrix has spaghetti form, the non-associative product
still produces four different percolated spaghetti matrices, A1, A2, A3, A4, that each have their own eigen-parameters.0BBBBB�a00 · a02 ·

· a11 · a13

a20 · a22 ·

· a31 · a33

1CCCCCA×

0BBBBB�b00 b01 b02 b03

b10 b11 b12 b13

b20 b21 b22 b23

b30 b31 b32 b33

1CCCCCA →

(172)0BBBBB�a00 . a02 .

. a11 . a02

a20 . a22 .

. a20 . a33

1CCCCCA0BBBBB�b00

b10

b20

b30

1CCCCCA 0BBBBB�a00 . a13 .

. a11 . a13

a31 . a22 .

. a31 . a33

1CCCCCA0BBBBB�b01

b11

b21

b31

1CCCCCA 0BBBBB�a00 . a02 .

. a00 . a13

a20 . a22 .

. a31 . a22

1CCCCCA0BBBBB�b02

b12

b22

b32

1CCCCCA 0BBBBB�a11 . a02 .

. a11 . a13

a20 . a33 .

. a31 . a33

1CCCCCA0BBBBB�b03

b13

b23

b33

1CCCCCA
A1b1 = λ1b1 , A2b2 = λ2b2 , A3b3 = λ3b3 , A4b4 = λ4b4 . (173)

(λ1) : (a22 − λ1)(a00 − λ1) = (a33 − λ1)(a11 − λ1) = a02a20 (λ3) : (a22 − λ3)(a00 − λ3) = a02a20 = a13a31 (174)

(λ2) : (a22 − λ2)(a00 − λ2) = (a33 − λ2)(a11 − λ2) = a13a31 (λ4) : (a33 − λ4)(a11 − λ4) = a02a20 = a13a31

The four eigenvalue parameters, λj , j = 1, 2, 3, 4, must each satisfy a pair of quadratic equations, shown in (174).
All eigenvalues exist and are shared in common whenever ∃ λ : (a00 − λ)(a22 − λ) = (a11 − λ)(a33 − λ) = a02a20 = a13a31 .
We can then speak of “the” eignevalue of the original spaghetti matrix, otherwise eigenvalues are specific to the
percolated spaghetti matrices derived from the original transformation matrix. But, transformations defined by
spaghetti type matrices act on individual column vectors somewhat similar to the situation in ordinary matrix algebra.

In general, however, the non-associative matrix algebra is quite different from the usual associative matrix algebra.
Collections of vectors link up and transform as a group, not as individualised objects. For this reason, one considers
the action of a square matrix on another square matrix, rather than the more familiar theme of a square matrix
acting on a single isolated column vector. If we consider the 4× 1 column vector to represent the position of a point
in 4-dimensional complex space, then the twisted product links pairs of points together, and the non-associative
matrix algebra describes the transformations of those linked pairs rather than the usual point transformations
found in the more familiar applications of standard linear algebra. When we expand this 4 × 4 matrix algebra to
8 × 8, the linked pair of 4 × 1 column vectors doubles again, and we now have 4 column vectors that link up and
transform as a group together. Since, however, each of these new column vectors has dimension 8× 1, we can fit the
descriptive parameters for two points of a 4-dimensional real space in each column. So, effectively, 8 points link up and
transform together. If we identify the 8 verticies of a 3-dimensional cube to be those 8 points, then the non-associative
algebra M[×](8, R) describes the linked transformation of entire three-dimensional objects, or the cubic lattice of space.

If we enumerate the real-valued parameters in each algebra, we see that the twisted product links 2 spacetime
points in M[×](2, H), using one column vector, links 4 spacetime points in M[×](4, C), using two coupled column
vectors, and links 8 spacetime points in M[×](8, R), using four coupled column vectors. Thus the non-associative
algebra describes the transformation geometry of line segments, squares, and cubes, respectively, if one thinks of
these 4-parameter point coordinates as event variables that identify the spatial location of select 3-space points at
the same specified coordinate time value.

physical applications. Although it is usual to often consider vectors as isolated objects, in order to dissect
and study the phenomenal world, in reality many physical vectors are linked together. The classic example is the
electromagnetic field. One can consider electric vectors,

−→
E , and magnetic vectors,

−→
B, in isolation. But, nature

actually links them, regardless of how we choose to study these fields. In the classical field theory, the electric field
has 3 components,

−→
E = (Ex, Ey , Ez), and the magnetic field has 3 components,

−→
B = (Bx, By , Bz). So, when one decides

to recognise the fact that these fields couple together, and transform together, as a pair, (
−→
E ,
−→
B), then one has to

consider the issue of representation. The choice is, either create a double column vector with the six component
parameters, and then describe transformations with 6 × 6 matrices, or dump the electromagnetic field parameters
into a 3 × 3 matrix, using up only 6 of the 9 degrees of freedom, and consider transformations on that field-matrix
instead. If we represent the electric and magnetic fields by quaternions, we now have two 4 × 1 column vectors
that pair up, which matches the order of dimensions in our non-associative algebras, and so we consider this topic next.
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maxwell’s equations in quaternions

[

d

dr
, B

]

= +

{

d

dr
, E

}

[

d

dr
, E

]

= −

{

d

dr
, B

}

(175)

The quaternion electromagnetic theory, discussed in our previous paper on Maxwell’s Equations [PJ1] [1−], represents
the electric and magnetic fields in terms of quaternion variables. The pair of fields (E, B) are thus practical examples
of 4-parameter field vectors linked together by physical requirements, as shown in (175). The expressions that define
the symmetric {d/dr, F}, and anti-symmetric [d/dr, F ], derivatives of a field, F , produce natural “twisted product”
expressions when unfolded into their defining formulas.

d

dr
→ B − B ←

d

dr
=

d

dr
→ E + E ←

d

dr
,

d

dr
→ (B + E) + (B − E)←

d

dr
= 0

(176)

d

dr
→ E − E ←

d

dr
= −

d

dr
→ B − B ←

d

dr
, −(B + E)←

d

dr
+

d

dr
→ (B − E) = 0

The equations on the left in (176) result from expanding the abbreviated forms in (175). They can then be
re-arranged into the equations on the right, in terms of an alternative pair of quaternion fields, (B + E) and (B−E).
This pair of equations can then be “doubled up” to obtain the two columns in a 2 × 2 quaternion matrix, which
then allows us to write the electromagnetic equations as a matrix equation using the non-associative twisted × product.

Maxwell’s Equations in M[×](2, H) representation.0B� d
dr
→ (B + E) + (B − E)← d

dr
(B −E)← d

dr
+ d

dr
→ (B + E)

−(B + E)← d
dr

+ d
dr
→ (B −E) − d

dr
→ (B − E) + (B + E)← d

dr

1CA =

0BBB� d

dr

d

dr

−
d

dr

d

dr

1CCCA×0B� B + E B − E

B −E B + E

1CA = 0 (177)

One way of writing Maxwell’s Equations in the M[×](2, H) algebra is shown in (177). It is to be understood that
the derivative operator, d/dr , always acts on the variable, regardless of whether it appears on the r.h.s or l.h.s of
the variable, on expanding the matrix product. The natural coupling, of a pair of vector fields together, is accurately
encapsulated in the relative reversing of factors characteristic of the twisted × product given by formal definition (2).
So, the same modification to the matrix product definition, that enables representation of octonions and mimics
the distinctive twist action intrinsic to the Cayley-Dickson process, also facilitates the expression of Maxwell’s
Electromagnetism by a simple matrix equation. This single matrix equation (177) can be re-written,

D × B = −D × E ⇐ the twisted × product maxwell equation(s) (178)

where,

D =

 
d/dr d/dr

−d/dr d/dr

!
, E =

 
+E −E

−E +E

!
, B =

 
B B

B B

!
.

= or =,

D =

 
d/dr −d/dr

d/dr d/dr

!
, B =

 
+B −B

−B +B

!
, E =

 
E E

E E

!
.

The signs in the matrix representations for the three parameters, { D, E , B } , are not unique, but can be
expressed in several alternative ways. Two such possibilities, that mirror each other, are shown in (178). The sign
differences within the 2 × 2 matrix definitions for the QQ-field parameters, E and B, reflect the electromagnetic
“duality,” also variously called the “field exchange symmetry,” or the “Heaviside Symmetry.” It was first discovered
by Oliver Heaviside, in the 1800s, that the classical 3-vector form of the homogeneous Maxwell’s Equations remain
invariant under a particular exchange of fields. If we replace

−→
E with

−→
B and

−→
B with −

−→
E we obtain the same equations

again. This is on record as the very first symmetry ever identified in Maxwell’s Equations. But, somehow, Heaviside
did not notice, that if q : (

−→
E ,
−→
B) 7→ (

−→
B ,−

−→
E ) then q2 : (

−→
E ,
−→
B) 7→ −(

−→
E ,
−→
B) , so that, q2 = −1 , and existence of this

http://arxiv.org/abs/math-ph/0307038
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“negative square” symmetry indicates the quaternionic formulation, which Maxwell had attempted, is perhaps much
more “natural” to the basic structure of electromagnetism, than the “artificial” positive square vectors he introduced.

Heaviside complained that the quaternions possessed those “unnatural” negative squares, that shouldn’t be
part of physical theory, and explained that this was part of his motivation for replacing Hamilton’s Quater-
nions with his (and Prof. Gibbs) vector formulation. In doing so, he was appealing to his prejudice for the old

familiar, and was unable to see the new quaternionic implications in the very symmetry he himself had just discovered.

This symmetry is preserved in our quaternion re-formulation of Maxwell’s Equations, as can be seen in (175). This
time, exchanging the “quaternion fields,” E with B and B with −E, we obtain the same quaternion homogeneous
equations. When, therefore, we write the Maxwell’s Equations as a single equation instead, i.e. D × B = −D × E ,
there are no longer 4 or 2 equations to exhibit the property, so the symmetry must be reflected in the structure
of the field parameters, E and B, themselves. If we keep the differential operator D fixed, and apply the field
exchange to the internal entries in the 2 × 2 matrix representations for E and B, we obtain the same equation
again. So, the Heaviside Symmetry is once again preserved, even in the single equation QQ formulation given in (178).

Since quaternions are also 2× 2 matrices over the complex numbers, we can now substitute the following (5) forms
to expand this representation to the corresponding 4×4 matrix algebra over complex numbers; z1, z2, E1, E2, B1, B2 ∈ C.

d

dr
=

0BB� d

dz1
−

d

dz∗2
d

dz2

d

dz∗1

1CCA E =

 
E1 −E∗

2

E2 E∗
1

!
B =

 
B1 −B∗

2

B2 B∗
1

!
(179)

The natural pairing of vectors (E, B) is represented here in the 2×2 matrix by a column vector of the corresponding
field pair (B + E, B − E). This single 2 × 1 column vector now itself becomes a pair of 4 × 1 column vectors when
we expand the M[×](2, H) matrix equation to M[×](4, C). So, two columns transform together in the 4 × 4 algebra,
the linkage provided this time by the percolation induced by the twisted action of the × product in the higher algebra.

maxwell’s equations in M[×](4, C) representation:0BBBBBBBBBBBBBBBBB�
d

dz1
−

d

dz∗2

d

dz1
−

d

dz∗2

d

dz2

d

dz∗1

d

dz2

d

dz∗1

−
d

dz1

d

dz∗2

d

dz1
−

d

dz∗2

−
d

dz2
−

d

dz∗1

d

dz2

d

dz∗1

1CCCCCCCCCCCCCCCCCA×
0BBBBBBBBBB�B1 + E1 −(B2 + E2)∗ B1 − E1 −(B2 − E2)∗

B2 + E2 (B1 + E1)∗ B2 − E2 (B1 − E1)∗

B1 − E1 −(B2 − E2)∗ B1 + E1 −(B2 + E2)∗

B2 − E2 (B1 − E1)∗ B2 + E2 (B1 + E1)∗

1CCCCCCCCCCA = 0 (180)

Substitution of the forms in (179) results in this 4× 4 matrix equation (180). In ordinary linear algebra, with its
associative · product, such an equation as (180) would naturally break out into four separate equations built around
each 4 × 1 column vector appearing in the electromagnetic square matrix. But, in the non-associative algebra, such
column vectors are paired together in transformations, so that two column vectors are required to describe the effects
of the derivative operator transformation matrix on the electromagnetic fields. This means that the type of questions
that makes sense to ask in the usual linear algebra, must be modified to account for this pairing of columns. To
enquire about the eigenvalue and eigenvectors for a non-associative transformation matrix may not yield meaningful
results, since this makes assumptions about the existence of isolated vectors in the system.

Paradoxically, the “non-associative” algebras actually “associate” column vectors into collections that must move
around and transform together as a group, and it is difficult, if not impossible, to “disassociate” these column
vectors into isolated objects of independent study. The apparent characteristic introduced by such non-associative
algebras, like octonions, into physical theory, is the power to explain that tendency for objects to associate. So, it
is the theme of “associativity,” but with a twist. Associativity, in the language of algebra, is the exchangeability of
sequencing of operations, e.g. x(yz) = (xy)z . But, associativity, in the physical world, is that tendency of matter
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to clump together in various formations. These are not entirely separate and distinct applications of the concept of
“associativity,” however, since one can be seen to be a natural consequence of the other.

The Maxwell’s Equations in (180) can now be re-written using ordinary associative matrix algebra over complex
numbers, in terms of the corresponding system of percolated and satellite matrices, as presented before in (165−169).
The first two columns of the 4×4 electromagnetic field-matrix are thus linked by the following simultaneous equations.0BBBBBBBBBBBBBBBBBB�

d

dz1

−
d

dz∗

2

d

dz1

0

d

dz2

d

dz∗

1

0
d

dz1

−
d

dz1

0
d

dz1

−
d

dz∗

2

0 −
d

dz∗

1

−
d

dz1

d

dz∗

1

1CCCCCCCCCCCCCCCCCCA
0BBBBBBBBBBB�B1 + E1

B2 + E2

B1 − E1

B2 − E2

1CCCCCCCCCCCA +

0BBBBBBBBBBBBBBBB�
0 0

d

dz2

0

0 0 0
d

dz2

−
d

dz2

0 0 0

0 −
d

dz2

0 0

1CCCCCCCCCCCCCCCCA
0BBBBBBBBBBB�−(B2 + E2)

∗

(B1 + E1)
∗

−(B2 − E2)∗

(B1 − E1)∗

1CCCCCCCCCCCA = 0 (181)

0BBBBBBBBBBBBBBBBBB�
0 0 −

d

dz∗

2

0

0 0 0 −
d

dz∗

2

d

dz∗

2

0 0 0

0
d

dz∗

2

0 0

1CCCCCCCCCCCCCCCCCCA
0BBBBBBBBBBB�B1 + E1

B2 + E2

B1 − E1

B2 − E2

1CCCCCCCCCCCA+

0BBBBBBBBBBBBBBBBBB�
d

dz1

−
d

dz∗

2

d

dz∗

1

0

d

dz2

d

dz∗

1

0
d

dz∗

1

−
d

dz∗

1

0
d

dz1

−
d

dz∗

2

0 −
d

dz∗

1

d

dz2

d

dz∗

1

1CCCCCCCCCCCCCCCCCCA
0BBBBBBBBBBB�−(B2 + E2)

∗

(B1 + E1)
∗

−(B2 − E2)∗

(B1 − E1)∗

1CCCCCCCCCCCA = 0 (182)

These two equations, (181) and (182), form a linear system of 4×4 matrix equations that contain the full content of the
Maxwell Equations. The second pair of equations below, (183) and (184), simply duplicate this information, re-writing
the equations in an alternative manner, since we constructed the initial 2 × 2 quatro-quaternionic electromagnetic
field-matrix in (177) by doubling up the original electromagnetic equations. The doubling up requires the presence of
these additional “shadow parameters,” that duplicate the information content, to track around with the original field
parameters, in order to facilitate matrix calculations within a square matrix format.0BBBBBBBBBBBBBBBBBB�
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But, the general idea of importance here, is that every non-associative matrix equation in M[×](4, C) can be re-
written as a system of associative matrix equations, and thus solved by the usual methods of the standard matrix
algebra. The same is true for the non-associative 8 × 8 algebra over reals, M[×](8, R), only there the number of
simultaneous equations in a set doubles to 4, owing to the 4 column vectors that link up and transform as a group. The
non-associative algebras can then be viewed as a condensed representation of such systems of associative simultaneous
linear equations. The Maxwell’s Equations example illustrates how a field-matrix might be employed in this context.



36

Conjecture: O × O ∼= M[×](8, R). i.e. the product algebra of the octonion algebra with itself is isomorphic to the
non-associative 8× 8 matrix algebra over the reals defined by the derived twisted product × given in appendix a.
Explore:

Let an octonion be, o = oueu, with basis, eu, u = 0, 1, 2, ..., 7 . An inspection of the octonion o in the 8 × 8 matrix
representation (117) shows that it can also be written,

o = ae0 + be1 + ce2 + de3 + ee4 + fe5 + ge6 + he7. (185)
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This gives us a convenient basis to start with. While an octonion basis can be established in several alternative ways,
our matrix in (117) is obtained simply by expanding through repeated substitution of the 2× 2 representation form
in (5) from the Cayley-Dickson ( I ) construction. To show that eu are a basis, we compute the eu×ev products, using
the derived twisted product for these 8× 8 matrices. This particular M[×](8, R) octonion basis is then found to have
the identical product table to that previously given in (153) for the octonion M[×](4, C) representation, when the basis
matrices have the eu label assignments shown above. As far as “octonion representation” is concerned, it does not
matter which definition for the × product we choose from appendix a. Both definitions give identical octonion tables.

We can expand this basis set in a number of ways. One method is to modify the signs on these eu, u = 1, 2, ..., 7
matrices to get other indepdenent matrices whose square is still −1, and then take the products of the new with
the old to find the new basis elements, and repeat the procedure until we get a complete set of 64 basis matrices.
Another method is to take the 32 complex basis matrices found for M[×](4, C) in (148, 155) and expand these 4× 4
complex to 8 × 8 real by substituting 2 × 2 real matrices for the internal 0’s, 1’s, and i’s, then identify one more
independent 8× 8 matrix to multiply these 32 by to double the set to 64. This indicates, also, that half the elements
of M[×](8, R) should form a subalgebra isomorphic to Ḧ×O, notwithstanding the fact that the × product definition
is somewhat different between the M[×](4, C) algebra and the M[×](8, R) algebra. Therefore, we can optionally pick

an initial alternating complex number triple {i, j, k} ∈ Ḧ , independent of the initial eu basis of (186), and expand
to 32 elements by taking products, then find one more independent matrix to get to 64. But, this time we also have
several independent quaternion triples, {i, j, k} ∈ H , outside the initial octonion basis, so we can start with H× O

constructions instead of Ḧ × O. We couldn’t represent H × O using the M[×](4, C) before, so given that this is new
and interesting we shall choose this approach to expand our basis set.

With a bit of exploration, we find and select the following independent ijk quaternion triple, using the “second”
definition for the × product given in appendix a, labeled (all cayley-dickson algebras):
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q = w + xi + yj + zk w, x, y, z,∈ R , q ∈ H (187)
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percolation issues: Once we’re no longer just representing the simple octonion algebra, O, we have to decide
exactly how to extend the definition of the × product, because there are differences in the generalized algebras that
result from the choice we make. An inspection of the two definitions for the 8-dim × product, given in appendix a ,
reveals they have two different “percolation” profiles. If we select the first definition, for example, and use that
for the definition of the generalized matrix algebra M[×](8, R), then we find there are 16 independent quaternion
triples within M[×](8, R) outside of the initial octonion basis set. But, if we select the second definition, we find
there are only 14 quaternion triples outside the initial octonion basis set. If we think of the M[×](8, R) algebra
as, in some sense, resulting from the doubling of the M[×](4, C) algebra, then the 64 basis elements of the former

should, in some sense again, contain 2 copies of the 32 elements found in the latter. But, M[×](4, C) ∼= Ḧ × O ,
and there are exactly 7 quaternion triples provided by O and none otherwise. So, we’d anticipate finding another 7
quaternion triples outside the the initial octonion basis in M[×](8, R). In which case, finding 16 triples seems a bit
odd, and 14 triples, while more than 7, are at least a multiple of 7. This leads us to be inclined to select the same
definition for the × product that is required for all Cayley-Dickson algebras to use here also for the M[×](8, R) algebra.

Notice that when we construct the 4 × 4 derived twisted × product, it doesn’t matter whether we use M(2, C) or
M[×](2, C), we not only obtain the same 4×4 representation for the octonions, but the generalized algebra, M[×](4, C),
is also independent of choice of product definition. This is because the “commuting” complex number entires precipi-
tate the same percolation profile in either case, resulting in only one effective definition for the × product. But, when
we make this 2 × 2 subtitution “twice” in succession, to expand our matrix algebra to 8 × 8, we’re then replacing
the “commuting” complex numbers with “non-commuting” 2 × 2 matrices in the final step, and so it does matter
now which method is used to construct the derived twisted product. We actually have 4 choices to go from 2 × 2 to
8× 8. We present the definitions that result from two of those in the appendix; first definition uses M(2, C) followed
by M(2, R), while second definition uses M[×](2, C) followed by M[×](2, R). But, we could also follow a third path,
M[×](2, C) followed by M(2, R), or fourth method, use M(2, C) followed by M[×](2, R). From the point of view of
representing octonions, all these definitions produce the same 8× 8 matrix representation. But, when considering the
generalized matrix algebra that contains the octonions, these definitions have a different impact on the structure of
that matrix algebra. We won’t discuss all the nuances between these alternatives here. Instead, we’ve picked one to
illustrate this study.

the H×O subalgebra. Using the quaternion defined in (187) and the octonion basis in (186), we now construct
the subalgebra H × O, by taking the products of the two bases to expand the set of elements. With the quaternion
multiplying from the left, we obtain a set of 32 basis matrices, βu, u = 0, 1, ...31, that is closed under the twisted ×
product: βu = eu, βu+8 = i× eu, βu+16 = j × eu, βu+24 = k × eu, u = 0, 1, 2, 3, 4, 5, 6, 7 ( see appendix b ).
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1CCCCCCCCCCCCCCCCCA (188)

To get the remaining basis matrices for M[×](8, R), we identify one more suitable 8×8 matrix that is also independent

of these 32. The matrix l shown in (188), has a simple cross diagonal form, with l2 = +1, is independent of the other
basis elements, and allows us to obtain the remaining 32 basis matrices to complete the set of 64. We multiply with
l from the left, and results are shown on page b of appendix b.

H×O + l× (H ×O) ∼= M[×](8, R) (189)

This allows us to write the generalized matrix algebra as a particular “doubling” of the H × O algebra, as shown

in (189), or to equivalently construct a new type of “ twisted split-octonion ”, ˜̈
O = H + l × H, from Hamilton’s

quaternions, and use the products of the basis elements, from this new 8-dim hypercomplex number and the regular
octonions, to arrive at the same result. The “split-octonion”, Ö, is a variation of John Grave’s octonions, where the
doubling from Hamilton’s quaternions is done by the introduction of a positive square imaginary element, l2 = +1,
instead of the more usual complex imaginary, i2 = −1, customary for octonions. A split-octonion basis can be
represented by the eight elements, βu, u = 0, 1, 2, .., 7, given in sequence by, { 1, i, j, k, l, li, lj, lk }, where the rules
for multiplication are given by i, j, k ∈ H, l2 = +1, li = −il, lj = −jl, lk = −kl, etc. In compact form the
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product table is given below on the left in table 190. The “twisted split-octonions”,
˜̈
O , can be similarily labeled,

βu, u = 0, 1, 2, .., 7, given in sequence by, { 1, i, j, k, l, l× i, l× j, l× k }, where the rules for multiplication are given
by, i, j, k ∈ H, l2 = +1, l × i = −i× l, l × j = −j × l, but then, l × k = +k × l, etc. In compact form the product
table is given below on the right in table (190).

× 0 1 2 3 4 5 6 7

0 0 1 2 3 4 5 6 7

1 1 0̄ 3 2̄ 5̄ 4 7̄ 6

2 2 3̄ 0̄ 1 6̄ 7 4 5̄

3 3 2 1̄ 0̄ 7̄ 6̄ 5 4

4 4 5 6 7 0 1 2 3

5 5 4̄ 7̄ 6 1̄ 0 3 2̄

6 6 7 4̄ 5̄ 2̄ 3̄ 0 1

7 7 6̄ 5 4̄ 3̄ 2 1̄ 0

(H + l ×H)×O ∼= M[×](8, R)

˜̈
O = (H + l ×H) “Twisted Split-Octonions” →

← Ö = (H + l H) “Split-Octonions”

˜̈
O×O ∼= M[×](8, R)

× 0 1 2 3 4 5 6 7

0 0 1 2 3 4 5 6 7

1 1 0̄ 3 2̄ 5 4̄ 7̄ 6

2 2 3̄ 0̄ 1 6 7 4̄ 5̄

3 3 2 1̄ 0̄ 7̄ 6 5̄ 4

4 4 5̄ 6̄ 7̄ 0 1̄ 2̄ 3̄

5 5 4 7 6̄ 1 0 3̄ 2

6 6 7̄ 4 5 2 3 0 1̄

7 7 6 5̄ 4 3̄ 2 1̄ 0̄

(190)

Ö = split-O ˜̈
O = twisted-split-O

(+ + + + − − − − ) ( + + + + − − −+ )

The two split algebras share some common attributes, while there are also some significant differences. They
both split the signature of the norm, to contain some + and some − signed elements, but do so differently.

Comparing norm signatures, N(Ö) ∼ ( + + + + − − −− ) verses N(
˜̈
O) ∼ (+ + + + − − −+ ), we see

the “twisted” version of the split octonion unevenly divides the number of positive and negative signs in contrast
to the even distribution found in the ordinary split octonion algebra. A search of the 14 quaternion triples
that exist outside the regular octonion basis in (186) turns up no set of seven triples with a common 7-element
basis, so that we cannot construct a second regular octonion in the remaining elements, only this twisted split octonion.

So, given that our initial guess, that O × O ∼= M[×](8, R), turned out to be false, but that our exploration shows
we can use a variation of the octonion algebra instead, we now replace our conjecture with the following alternative.

Conjecture:
˜̈
O×O ∼= M[×](8, R). i.e. the product algebra of the twisted split-octonion algebra with the octonion

algebra is isomorphic to the non-associative 8 × 8 matrix algebra over the reals defined by the second definition of
the derived twisted product × given in appendix a.

Proof: With the octonion basis in (186), the independent quaternion ijk triple in (187), and the additional

independent basis matrix, l, of (188), we first construct the twisted split-octonion, ˜̈
O = H + l × H , and then

take the product of this basis with the octonion basis, O, to obtain the set of 64 matrices. These are easily shown
to be linearly independent, and therefore represent the M[×](8, R) algebra, since they share the same × product.
The basis matrices so constructed are the same as given in the appendix b, up to a sign, since the l element
only associates in half of the cases, while it anti-associates in the other half, in the 24 instances of the product,
l× (H×O) = ±(l×H)×O , where H is replaced by an imaginary element of the ijk triple (i.e. excl. 1), and O is
replaced by one of the eight basis elements, eu, u = 0, 1, 2, .., 7.

the twisted × product inverse for M[×](8, R).

To construct the inverse of a non-associative matrix in this 8-dim matrix algebra, we proceed in a similar manner to
the 4×4 algebra. This time, instead of a pair of coupled equations, the percolation results in sets of four simultaneous
matrix equations expressed in ordinary matrix algebra. Each percolated matrix now has three satellite matrices
associated with it, making a total of 8 percolated, Au, u =1, 2, ...,8, and 24 satellites, Su1, Su2, Su3, u =1, 2, ...,8, to
complete the system of equations. Since these 8 × 8 matrices are now members of the ordinary real matrix algebra,
the usual matrix methods for finding the inverse of a matrix can then be applied to solve the system of equations,
similar to that illustrated above in the M[×](4, C) situation, and so find the non-associative 8× 8 matrix inverse.
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IV. CONCLUSIONS.

motivations. This research was initially inspired by the need to find a way to split the product operator for
the 16-dim system of hexpe numbers. In our previous paper on “Hexpentaquaternions” [PJ2][2−], we discussed
the fact that, since quaternions form a non-abelian algebra, manipulation of even simple algebraic expressions is
difficult without a way to effectively commute the variables in a product. We showed how solving linear quaternion
equations with matrix algebra reveals what kind of modifications are required to enable the commuting of these
factors. The quaternion parameters in a product, A · B, could be permuted by changing the hand of one of the
factors, A · B = B′ · Â, so that if A and B are right-hand quaternions, B′ is now a left-hand quaternion. This led
us to construct the two-hand quaternion algebra that would allow us to work with both right hand and left hand
quaternions in the same system. The hand changing operator ′ is a very convenient device, and works somewhat
similar to the conjugate ∗, so that the algebra has a rather pleasing feel in the working out of solutions. However,
there’s one problem with the whole idea. Not only must we change the hand of the B parameter, B 7→ B′, we must
also mark the A parameters with a hat, A 7→ Â, to indicate which variable is moving and which variable is the fixed
pivot. The alternative, A · B = B̂ · A′, is obviously another equally valid way to resolve the commutation. This
means we must have two forms for the representation of our quaternion variables, that distinguish between the hat,
Â, and hat-free, A, state of a parameter. Matrix algebra resolves this issue by representing the hat, Â, with column
vectors, and the hat-free, A, by square matrices. But, this technique is limited in that it can only be used to solve
linear problems, since the hat, or column vectors, are generally required to stand on one side of the expressions. So,
it becomes difficult to extend the method to the manipulation of expressions consisting of polynomials with degree
higher than one.

Splitting the product. We raised the point, in our previous paper, that there are two ways to resolve this
commutation issue; one could either “split the representation” into two, or “split the product operator” into two.
Matrix algebra shows immediately how to split the representation, but it is not equally obvious how to split the
product operator.

A · B = AB (191)

A′ ⊙B = BA (192)

http://www.hypercomplex.com/research/emgrav/hypcx-20060129a.pdf
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Splitting the product would allow us to keep the same representation for all quaternion parameters. We’d still have
our hand changing operator ′, and so two-hand quaternions, but we wouldn’t be constrained by the column vector
effect, to have some of our parameters stuck on the right-most side of our algebraic expressions. We therefore need
two forms for the product operator, · and ⊙ , with the kind of rules shown above (In discussing this concept, we
used the symbol ⊗ in our previous paper to represent that unknown alternative product, but we use ⊙ here instead
to avoid confusion with the tensor product of algebras).

Having such a dual product algebra would allow us to commute the variables, and write, A · B = B′ ⊙ A, with a
simple hand change and operator change. But, we’d need to establish the working rules for the two multiplication
operations being used in the same system. Our single product, AB, of the usual algebra, is split into two forms, A ·B
and A⊙B, to construct the method. The first form, A ·B, obeys the all the usual rules for the multiplication operator,
but the second, A ⊙ B and A′ ⊙ B, must have some unusual rules that allow it to work. Attempts to find the right
set of rules for this second operator have proved illusive so far. We first tried a number of heuristic approaches and
elementary conjectures, but they all turned out to have seemingly unresolvable problems. Our initial naive approach
was to simply take the four—commutive, associative, right distributive, and left distributive—laws for pivots, that
work so well, and use these to guess the corresponding dual product rules that must apply to achieve the same effects.

qB = B′q̂ q ·B = B′ ⊙ q (193)

A(B′q̂) = (AB′)q̂ A · (B′ ⊙ q) = (A ·B′)⊙ q (194)

Gq̂ + F q̂ = (G + F )q̂ G⊙ q + F ⊙ q = (G + F )⊙ q (195)

H(Gq̂ + F p̂) = (HG)q̂ + (HF )p̂ H · (G⊙ q + F ⊙ p) = (H ·G)⊙ q + (H · F )⊙ p (196)

H, G, F,∈ Xn , with either q, p, A, B,∈ HR , or q, p, A, B ∈ HL

So, for each given pivot law (above left) we introduced the corresponding dual product, · and ⊙, form (above right).
We then spent a considerable effort trying to “fix” these equivalent dual product rules, to no avail. There seemed to
be lots of problems establishing a dual product algebra, and getting the two multiplications to work together appeared
too difficult to resolve by just guesswork. Then the thought occured to us that the octonions have a non-associative
product, and matrices have an associative product. So, if one could figure out how to modify the product in matrix al-
gebra to represent octonions, one would have a natural dual product algebra to work with. This would provide a more
structured approach to searching for that dual product system we required. It would also avoid the arbitrary guess-
work that marked some of our other approaches. And certainly, a study of a dual product system should give us clues
how to proceed. A search of the literature, using our limited resources, did not turn up anything we could use. But the
method of constructing the twisted product for matrix algebra did occur to us along the way, and was a partial success.

We could now construct a matrix algebra with two products, · and × , one associative and the other
non-associative. Well, our two-hand quaternions are already represented by a matrix algebra, so could the new
matrix product × from the octonion solution be adapted to play the role of the ⊙ we’re looking for? Starting
with our derived complex matrix algebra, M[×](4, C), and restricting the complex numbers to those with vanishing
imaginary parts, we obtain a corresponding matrix algebra over reals, M[×](4, R). The twisting in the definition of
the × has no effect here on our real numbers, but the percolation does, and so our × product is different from the
standard · product. Now we can explore the effect this derived twisted product has on our hexpe number system, by
extending that algebra to include this × product. The first surprising observation is that, despite the percolation,
the set of 32 hexpe basis numbers is closed under this new operator, i.e. ∀ h, g ∈ Xb : h × g ∈ Xb. The second
surprise, is that right hand quaternions commute, p, q ∈ HR : p× q = q× p. However, the operation is not closed on
the set of right hand quaternions, since the product of two right hand quaternions is not usually another right hand
quaternion, it’s a general hexpe number instead. The × product table for the hexpe numbers is given in appendix c .
This can be compared with the associative product table (table t.2) on pg. 60 of our previous paper [PJ2][2−] (The
“ × ” symbol in the upper left corner of the table in that paper should now read “ · ” instead).

Given the rules (193− 196) above, that describe what sort of system we’re aiming for, the × product seems not
to be the right operator. However, we also discovered, in the process of constructing the general quatro-quaternion
algebra, that the new non-associative operator itself seems to require a dual form. This operator has two forms, that
we could refer to as “forward” and “reverse” products, × and

↼−
× , which, may yet yield some further insights that

we could use to help construct our system.

http://www.hypercomplex.com/research/emgrav/hypcx-20060129a.pdf
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stitching patterns. The standard matrix algebra was constructed from systems of linear equations having
abelian parameters in mind. So, what does it mean to use non-abelian parameters for matrix components? In the
1800s, Sir W. R. Hamilton engaged in a running battle with mathematicians over the meaning, interpretation, and
development of algebra. Hamilton’s view was that algebra should always be based on reality, so that algebraic
constructs could have physical application. Sir Hamilton wrote a celebrated essay on “Algebra as the Science of
Pure Time” expounding his point of view, and valiantly defended his arguments in various other writings. But,
he eventually lost this battle to the followers of Boole, who viewed logic as the very foundation of algebra, and
were happy to construct any kind of abstraction, however useless it might be in physical interpretation, provided
the construction was internally consistent with regard to the fundamental axioms and laws of logic. Hamilton
may have lost this battle, but his musings often strike a cord with Physicists attempting to find the right way to
apply the mathematician’s construction to their physical problems. What does it mean to write M(2, H), for example?

If we consider a system of linear equations,

A00x0 + A01x1 + A02x2 + A03x3 = y0 B00y0 + B01y1 + B02y2 + B03y3 = z0

A10x0 + A11x1 + A12x2 + A13x3 = y1 B10y0 + B11y1 + B12y2 + B13y3 = z1 (197)

A20x0 + A21x1 + A22x2 + A23x3 = y2 B20y0 + B21y1 + B22y2 + B23y3 = z2

A30x0 + A31x1 + A32x2 + A33x3 = y3 B30y0 + B31y1 + B32y2 + B33y3 = z3

where we have to solve many such sets over and over again, the advantages of matrix algebra are obvious. Matrices
allow us to separate the known parameters from the unknowns, aggregate the like parameters into collections,
and abbreviate these expressions, achieving a wondrous efficiency in economy of symbols. At the same time, this
whole construction process simultaneously generates a new perception of the algebra of these linear expressions, by
revealing the hidden algebraic structure that becomes really clear only through this abstraction provided by the
matrix formulation. We can separate, aggregate, and abbreviate these expressions thus,

a =

0BBB�A00 A01 A02 A03

A10 A11 A12 A13

A20 A21 A22 A23

A30 A31 A32 A33

1CCCA b =

0BBB�B00 B01 B02 B03

B10 B11 B12 B13

B20 B21 B22 B23

B30 B31 B32 B33

1CCCA x =

0BBB�x0

x1

x2

x3

1CCCA y =

0BBB�y0

y1

y2

y3

1CCCA z =

0BBB�z0

z1

z2

z3

1CCCA (198)

a · x = y , b · y = z (199)

This allows us to use pre-established formulas for the inverse of a matrix to write, x = a−1 · y and y = b−1 · z, for
example, or to write the z’s in terms of the x’s, z = b · (a ·x) = (b · a) · x, by suitable extension of the definition of the
matrix product · to square arrays, which lets us easily recognise the algebraic structure property, b · a 6= a · b, even
though the components of the matrices themselves commute, and so on. But, this is all constructed on the premise
that we can separate the parameters, A’s from x’s etc., pack them into these arrays, and then “ stitch ” them back
together again to recover the linear expressions using the standard definition of the matrix product. Our ability to
unzip the original linear expressions, and zip them back together correctly, is largely dependent on the fact that these
component parameters are abelian factors. Now consider another somewhat similar system of linear equations,

A00x0 + x1A01 + x2A02 + A03x3 = y0 B00y0 + y1B01 + y2B02 + B03y3 = z0

A10x0 + x1A11 + x2A12 + A13x3 = y1 B10y0 + y1B11 + y2B12 + B13y3 = z1 (200)

A20x0 + x1A21 + x2A22 + A23x3 = y2 B20y0 + y1B21 + y2B22 + B23y3 = z2

A30x0 + x1A31 + x2A32 + A33x3 = y3 B30y0 + y1B31 + y2B32 + B33y3 = z3

If the parameters are still abelian, we can always rearrange these equations (200) to match the form (197), and
apply our standard matrix algebra. But, what happens when the parameters are non-abelian? The linear expressions
in (197) and (200) have the following twisted product forms,
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r + r + r + r

r + r + r + r

r + r + r + r

r + r + r + r

r + l + l + r

r + l + l + r

r + l + l + r

r + l + l + r

The expressions in (197) are based on a system of right actions, r+r+r+r, while those in (200) have a combination
of right and left action forms, r+l+l+r. If we separate and collect the A’s and x’s into arrays, how do we zip them
back together again?

The usual matrix product does not have the correct stitching pattern recorded in its method, that would enable it to

reproduce the twisted profile of a general non-abelian linear expression. So, before we use non-abelian parameters for
the components of a matrix we should expect to have to update our very conception of matrix algebra.

Certainly, in the limited case, when our non-abelian parameters happen to form right action expressions that match
the form in (197), we can apply the standard matrix algebra to this special situation, and so extend the definition to
M(2, H). But, those very non-abelian parameters can form many alternative expressions also, like the Cayley-Dickson
construction process exhibits, that are more natural forms in their own algebra, and there’s no reason to restrict
the consideration to just one type of linear expression form. The quatro-quaternions provide us with a simple and
natural way to extend the matrix algebra, to account for some other forms found in non-abelian mathematics.

summary. We found and reviewed two papers on the topic of “Matrix Representations of Octonions” in the hope
that we could use some existing art for our work. Daboul and Delbourgo [DD][3−] introduce an extension to the
Zorn’s vector matrix algebra, while Tian [YT][4−] presents a development based on the doubling of 4 × 4 real matrix
representations of Hamilton’s quaternions. We ended up introducing our own method, which seems a more natural
construction to us, because it tackles the problem at the “foundations” of the very concept of the definition of matrix
multiplication itself, rather than attempting to adapt the existing structure by grafting a special product on at a
higher level. Octonions can be represented by 2 × 2, 4 × 4, and 8 × 8 matrices, as we have demonstrated here, and
so can any Cayley-Dickson algebra. By repeated substitution of the 2 × 2 matrix form, using the non-associative
matrix product, any Cayley-Dickson algebra can be ultimately represented as a matrix algebra over reals. In
each substitution, however, the matrix algebra constructed forms a more general algebra than the Cayley-Dickson
algebra it contains, and with the exception of the quatro-quaternions, QQ = M[·,×](2, H), and a brief review of some
characteristics of the descendant M[×](4, C) and M[×](8, R) matrix algebras derived from them, the properties of these
more general matrix algebras have not been examined in this paper. We chose to focus on the quatro-quaternions,
since this is the simplest non-trivial example of the concept of the twisted product that might be of general interest.

Product Algebras: We showed that ˜̈
O × O ∼= M[×](8, R), Ḧ × O ∼= M[×](4, C), and, C × O ∼= M[×](2, H),

but admit there are probably more rigorous ways to prove these identities than we have given in this paper. The idea
to search for these identities was stimulated by the known results, H′ ⊗ H ∼= M(4, R) and H ⊗ H ∼= M(4, R), which
was pointed out to us recently on sci.math.research, and while the “tensor product” itself could not be used in
this context, because of the very “twisted” nature of the non-associative algebras, we found we could nevertheless
construct these kinds of alternative “product algebras” whenever the two hypercomplex algebras involved are able to
be represented by a common non-associative matrix algebra.

Notation: In the event that other 2× 2 twisted product definitions prove useful, we define, ×j , j =1, 2, ..., 256, the
indexed operator, sequenced in any particular order, to facilitate representation of the idea, a×j b, all of which lead

to problems solvable with the two-hand quaternion algebra. In this case, a
↼−
× j b, refers to the mirror image product

that reverses each pair of factors appearing within the matrix product definition expression, and our algebra is now
the generalized quatro-quaternions, QQG. One then thinks of an algebra as possessing a whole category of products
of a particular type, rather than a single product, since the single product idea benefited largely from the degen-
erate nature of the permutation symmetry found in product expressions operating in an environment of abelian factors.

Matrix Upgrade: When complex numbers were introduced to matrices, the whole of matrix algebra recieved a
minor overhaul, and matrices became Hermitian and Unitary. Complex numbers brought with them that property
of conjugation, and the new characteristic was quickly integrated into the structure of matrix algebra. One could
now take the conjugate ∗ of a matrix as a whole, and combine ∗ with the usual matrix transpose T to construct
the even more useful “hermitian conjugate” † , with A † = A∗T , to obtain useful results like (AB)† = B†A†, etc.

http://www.arxiv.org/abs/hep-th/9906065
http://www.arxiv.org/abs/math.RA/0003166
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The result was a complex matrix algebra that proved extraordinarily suitable in applications to physics. But, since
quaternions were introducted, even though they also bring something additionally new with them, no similar further
upgrade to the matrix algebra has been yet undertaken. The quaternions were forced to work along with the same
principles that govern the lower dimensional algebras, when wearing the matrix garments, and their unique character
and requirements went unmet. It was as if complex numbers were just tossed into a matrix where conjugation
was not allowed, since real numbers did not require them, and so were forced to work with the principles of real
algebra in that context. No efforts were made to accomodate the unique properties that the quaternions bring with
them. The Cayley-Dickson construction suggests to us that to work with these higher algebras it may be profitable
to at least consider both twisting and conjugation: the twisting facilitates the expression of the non-commuting
property starting with the quaternions (i.e. to accomodate the wider variety of alternative non-abelian expressions
generally encountered when reckoning with non-commuting parameters), just as the conjugation assists with norms
and inversions beginning with the complexes. Non-commuting factors break the permutation symmetry of products
existing in mathematical expressions and introduce a diverse multiplicity that needs to be recognised and adequately
addressed if one is to seriously consider using such non-abelian parameters within matrices. Even when just
working with only matrices over reals, the common practice of placing matrices within matrices raises this same
issue of replacing abelian entries with non-abelian entries, and the automatic implicit “right action” convention
applied to product expressions in such cases artificially limits the expressiveness of the technique. The new formal
twisted × product definition given in (2) can thus be viewed as a first step on this path towards upgrading the ma-
trix algebra to account for the peculiar characteristics encountered in number systems beyond the reals and complexes.

Concepts: We introduced the concepts of twisting and percolation to throw light on the type of modfications to
matrix products, that might, in general, lead to more constructive forms and alternate matrix algebras, and mentioned
our quest for the right formulation of that “Algebra of the Split Operator” that led us towards this research. While we
have not solved this problem of finding the right operator, we are yet to try the exhaustive search through the twisted
and percolated forms to find out what is possible, and cannot claim to have examined and comprehended the simple
quatro-quaternions (and their descendent matrix algebras) in sufficient depth to recognise whether or not the answer
might somehow be found right here. We introduced the reversing operator, X = PQ,

↼−
X = QP , which can be used in

various contexts to facilitate discussion and representation of a recurring characteristic in non-abelian expressions that
often require simple reversal of two factors to simplify terms or describe modifications in the working out of problems.
We introduced the operators, R( · ) and L( · ), that extract the “right pure quaternion” and “left pure quaternion” of
a number in two-hand quaternions, similar to the vector operator, V ( · ), from Hamilton’s calculus; and also extended
the concept of conjugation, h∗, to include the right conjugate, h∗R , and left conjugate, h∗L , of a number, that attack
the right-hand and left-hand parts separately, to simplify the art of reckoning with hexpe numbers. The usual number
systems—complex, quaternion, and octonion—can not only be “ split ” but now “ twisted ”, and either or both,
producing alternative varieties with differing norm signatures and product tables, and corresponding bi-numbers can
be constructed. We introduced “twisted bi-octonions,” and “twisted split-octonions,” in the context of the identifica-
tion of the generalized non-associative matrix algebras, that serve to illustrate two of these additional number varieties.
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A.1

APPENDIX A

the derived twisted × product for the 8× 8 matrix.

The definition of the twisted × product for M[×](8, R). The version given below is obtained from M[×](2, H),
by replacing the quaternion entries with M[·](2, C), then using M[·](2, R) to replace those complex numbers. The
definition is valid for representation of octonions only. The alternative definition, immediately following this one,
may be used for both octonions and general Cayley-Dickson Algebras. Percolated terms are marked in boldface.

[Cij ] = [Apq]× [Brs]
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the 8-dim × product (for octonions only):

C00 = A00B00 + A01B10 + A02B20 + A03B30 + B40A04 + B41A14 + B42A24 + B43A34

C10 = A10B00 + A11B10 + A12B20 + A13B30 + B50A04 + B51A14 + B52A24 + B53A34

C20 = A20B00 + A21B10 + A22B20 + A23B30 + B60A04 + B61A14 + B62A24 + B63A34

C30 = A30B00 + A31B10 + A32B20 + A33B30 + B70A04 + B71A14 + B72A24 + B73A34

C40 = B00A40 + B01A50 + B02A60 + B03A70 + A44B40 + A45B50 + A46B60 + A47B70

C50 = B10A40 + B11A50 + B12A60 + B13A70 + A54B40 + A55B50 + A56B60 + A57B70

C60 = B20A40 + B21A50 + B22A60 + B23A70 + A64B40 + A65B50 + A66B60 + A67B70

C70 = B30A40 + B31A50 + B32A60 + B33A70 + A74B40 + A75B50 + A76B60 + A77B70

C01 = A00B01 + A01B11 + A02B21 + A03B31 + B40A05 + B41A15 + B42A25 + B43A35

C11 = A10B01 + A11B11 + A12B21 + A13B31 + B50A05 + B51A15 + B52A25 + B53A35

C21 = A20B01 + A21B11 + A22B21 + A23B31 + B60A05 + B61A15 + B62A25 + B63A35

C31 = A30B01 + A31B11 + A32B21 + A33B31 + B70A05 + B71A15 + B72A25 + B73A35

C41 = B00A41 + B01A51 + B02A61 + B03A71 + A44B41 + A45B51 + A46B61 + A47B71

C51 = B10A41 + B11A51 + B12A61 + B13A71 + A54B41 + A55B51 + A56B61 + A57B71

C61 = B20A41 + B21A51 + B22A61 + B23A71 + A64B41 + A65B51 + A66B61 + A67B71

C71 = B30A41 + B31A51 + B32A61 + B33A71 + A74B41 + A75B51 + A76B61 + A77B71

C02 = A00B02 + A01B12 + A02B22 + A03B32 + B40A06 + B41A16 + B42A26 + B43A36

C12 = A10B02 + A11B12 + A12B22 + A13B32 + B50A06 + B51A16 + B52A26 + B53A36

C22 = A20B02 + A21B12 + A22B22 + A23B32 + B60A06 + B61A16 + B62A26 + B63A36

C32 = A30B02 + A31B12 + A32B22 + A33B32 + B70A06 + B71A16 + B72A26 + B73A36

C42 = B00A42 + B01A52 + B02A62 + B03A72 + A44B42 + A45B52 + A46B62 + A47B72

C52 = B10A42 + B11A52 + B12A62 + B13A72 + A54B42 + A55B52 + A56B62 + A57B72

C62 = B20A42 + B21A52 + B22A62 + B23A72 + A64B42 + A65B52 + A66B62 + A67B72

C72 = B30A42 + B31A52 + B32A62 + B33A72 + A74B42 + A75B52 + A76B62 + A77B72

C03 = A00B03 + A01B13 + A02B23 + A03B33 + B40A07 + B41A17 + B42A27 + B43A37

C13 = A10B03 + A11B13 + A12B23 + A13B33 + B50A07 + B51A17 + B52A27 + B53A37

C23 = A20B03 + A21B13 + A22B23 + A23B33 + B60A07 + B61A17 + B62A27 + B63A37

C33 = A30B03 + A31B13 + A32B23 + A33B33 + B70A07 + B71A17 + B72A27 + B73A37

C43 = B00A43 + B01A53 + B02A63 + B03A73 + A44B43 + A45B53 + A46B63 + A47B73

C53 = B10A43 + B11A53 + B12A63 + B13A73 + A54B43 + A55B53 + A56B63 + A57B73

C63 = B20A43 + B21A53 + B22A63 + B23A73 + A64B43 + A65B53 + A66B63 + A67B73

C73 = B30A43 + B31A53 + B32A63 + B33A73 + A74B43 + A75B53 + A76B63 + A77B73

C04 = B04A00 + B05A10 + B06A20 + B07A30 + A04B44 + A05B54 + A06B64 + A07B74

C14 = B14A00 + B15A10 + B16A20 + B17A30 + A14B44 + A15B54 + A16B64 + A17B74

C24 = B24A00 + B25A10 + B26A20 + B27A30 + A24B44 + A25B54 + A26B64 + A27B74

C34 = B34A00 + B35A10 + B36A20 + B37A30 + A34B44 + A35B54 + A36B64 + A37B74

C44 = A40B04 + A41B14 + A42B24 + A43B34 + B44A44 + B45A54 + B46A64 + B47A74

C54 = A50B04 + A51B14 + A52B24 + A53B34 + B54A44 + B55A54 + B56A64 + B57A74

C64 = A60B04 + A61B14 + A62B24 + A63B34 + B64A44 + B65A54 + B66A64 + B67A74

C74 = A70B04 + A71B14 + A72B24 + A73B34 + B74A44 + B75A54 + B76A64 + B77A74

C05 = B04A01 + B05A11 + B06A21 + B07A31 + A04B45 + A05B55 + A06B65 + A07B75

C15 = B14A01 + B15A11 + B16A21 + B17A31 + A14B45 + A15B55 + A16B65 + A17B75

C25 = B24A01 + B25A11 + B26A21 + B27A31 + A24B45 + A25B55 + A26B65 + A27B75

C35 = B34A01 + B35A11 + B36A21 + B37A31 + A34B45 + A35B55 + A36B65 + A37B75

C45 = A40B05 + A41B15 + A42B25 + A43B35 + B44A45 + B45A55 + B46A65 + B47A75

C55 = A50B05 + A51B15 + A52B25 + A53B35 + B54A45 + B55A55 + B56A65 + B57A75

C65 = A60B05 + A61B15 + A62B25 + A63B35 + B64A45 + B65A55 + B66A65 + B67A75

C75 = A70B05 + A71B15 + A72B25 + A73B35 + B74A45 + B75A55 + B76A65 + B77A75

C06 = B04A02 + B05A12 + B06A22 + B07A32 + A04B46 + A05B56 + A06B66 + A07B76

C16 = B14A02 + B15A12 + B16A22 + B17A32 + A14B46 + A15B56 + A16B66 + A17B76

C26 = B24A02 + B25A12 + B26A22 + B27A32 + A24B46 + A25B56 + A26B66 + A27B76

C36 = B34A02 + B35A12 + B36A22 + B37A32 + A34B46 + A35B56 + A36B66 + A37B76

C46 = A40B06 + A41B16 + A42B26 + A43B36 + B44A46 + B45A56 + B46A66 + B47A76

C56 = A50B06 + A51B16 + A52B26 + A53B36 + B54A46 + B55A56 + B56A66 + B57A76

C66 = A60B06 + A61B16 + A62B26 + A63B36 + B64A46 + B65A56 + B66A66 + B67A76

C76 = A70B06 + A71B16 + A72B26 + A73B36 + B74A46 + B75A56 + B76A66 + B77A76

C07 = B04A03 + B05A13 + B06A23 + B07A33 + A04B47 + A05B57 + A06B67 + A07B77

C17 = B14A03 + B15A13 + B16A23 + B17A33 + A14B47 + A15B57 + A16B67 + A17B77

C27 = B24A03 + B25A13 + B26A23 + B27A33 + A24B47 + A25B57 + A26B67 + A27B77

C37 = B34A03 + B35A13 + B36A23 + B37A33 + A34B47 + A35B57 + A36B67 + A37B77

C47 = A40B07 + A41B17 + A42B27 + A43B37 + B44A47 + B45A57 + B46A67 + B47A77

C57 = A50B07 + A51B17 + A52B27 + A53B37 + B54A47 + B55A57 + B56A67 + B57A77

C67 = A60B07 + A61B17 + A62B27 + A63B37 + B64A47 + B65A57 + B66A67 + B67A77

C77 = A70B07 + A71B17 + A72B27 + A73B37 + B74A47 + B75A57 + B76A67 + B77A77
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the 8-dim × product (all cayley-dickson algebras):

C00 = A00B00 + B10A01 + B20A02 + A12B21 + B40A04 + A14B41 + A24B42 + B52A25

C10 = B00A10 + A11B10 + A02B30 + B31A12 + A04B50 + B51A14 + B42A34 + A35B52

C20 = B00A20 + A30B01 + A22B20 + B30A23 + A04B60 + B70A05 + B62A24 + A34B63

C30 = A20B10 + B11A30 + B20A32 + A33B30 + B60A14 + A15B70 + A24B72 + B73A34

C40 = B00A40 + A50B01 + A60B02 + B12A61 + A44B40 + B50A45 + B60A46 + A56B61

C50 = A40B10 + B11A50 + B02A70 + A71B12 + B40A54 + A55B50 + A46B70 + B71A56

C60 = A40B20 + B30A41 + B22A60 + A70B23 + B40A64 + A74B41 + A66B60 + B70A67

C70 = B20A50 + A51B30 + A60B32 + B33A70 + A64B50 + B51A74 + B60A76 + A77B70

C01 = B01A00 + A01B11 + A03B20 + B21A13 + A05B40 + B41A15 + B43A24 + A25B53

C11 = A10B01 + B11A11 + B30A03 + A13B31 + B50A05 + A15B51 + A34B43 + B53A35

C21 = A21B00 + B01A31 + B21A22 + A23B31 + B61A04 + A05B71 + A25B62 + B63A35

C31 = B10A21 + A31B11 + A32B21 + B31A33 + A14B61 + B71A15 + B72A25 + A35B73

C41 = A41B00 + B01A51 + B03A60 + A61B13 + B41A44 + A45B51 + A47B60 + B61A57

C51 = B10A41 + A51B11 + A70B03 + B13A71 + A54B41 + B51A55 + B70A47 + A57B71

C61 = B21A40 + A41B31 + A61B22 + B23A71 + A65B40 + B41A75 + B61A66 + A67B71

C71 = A50B21 + B31A51 + B32A61 + A71B33 + B50A65 + A75B51 + A76B61 + B71A77

C02 = B02A00 + A10B03 + A02B22 + B32A03 + A06B40 + B50A07 + B42A26 + A36B43

C12 = A00B12 + B13A10 + B22A12 + A13B32 + B40A16 + A17B50 + A26B52 + B53A36

C22 = A20B02 + B12A21 + B22A22 + A32B23 + B60A06 + A16B61 + A26B62 + B72A27

C32 = B02A30 + A31B12 + A22B32 + B33A32 + A06B70 + B71A16 + B62A36 + A37B72

C42 = A42B00 + B10A43 + B02A62 + A72B03 + B42A44 + A54B43 + A46B62 + B72A47

C52 = B00A52 + A53B10 + A62B12 + B13A72 + A44B52 + B53A54 + B62A56 + A57B72

C62 = B20A42 + A52B21 + A62B22 + B32A63 + A64B42 + B52A65 + B62A66 + A76B63

C72 = A42B30 + B31A52 + B22A72 + A73B32 + B42A74 + A75B52 + A66B72 + B73A76

C03 = A01B02 + B03A11 + B23A02 + A03B33 + B41A06 + A07B51 + A27B42 + B43A37

C13 = B12A01 + A11B13 + A12B23 + B33A13 + A16B41 + B51A17 + B52A27 + A37B53

C23 = B03A20 + A21B13 + A23B22 + B23A33 + A07B60 + B61A17 + B63A26 + A27B73

C33 = A30B03 + B13A31 + B32A23 + A33B33 + B70A07 + A17B71 + A36B63 + B73A37

C43 = B01A42 + A43B11 + A63B02 + B03A73 + A45B42 + B43A55 + B63A46 + A47B73

C53 = A52B01 + B11A53 + B12A63 + A73B13 + B52A45 + A55B53 + A56B63 + B73A57

C63 = A43B20 + B21A53 + B23A62 + A63B33 + B43A64 + A65B53 + A67B62 + B63A77

C73 = B30A43 + A53B31 + A72B23 + B33A73 + A74B43 + B53A75 + B72A67 + A77B73

C04 = B04A00 + A10B05 + A20B06 + B16A21 + A04B44 + B54A05 + B64A06 + A16B65

C14 = A00B14 + B15A10 + B06A30 + A31B16 + B44A14 + A15B54 + A06B74 + B75A16

C24 = A00B24 + B34A01 + B26A20 + A30B27 + B44A24 + A34B45 + A26B64 + B74A27

C34 = B24A10 + A11B34 + A20B36 + B37A30 + A24B54 + B55A34 + B64A36 + A37B74

C44 = A40B04 + B14A41 + B24A42 + A52B25 + B44A44 + A54B45 + A64B46 + B56A65

C54 = B04A50 + A51B14 + A42B34 + B35A52 + A44B54 + B55A54 + B46A74 + A75B56

C64 = B04A60 + A70B05 + A62B24 + B34A63 + A44B64 + B74A45 + B66A64 + A74B67

C74 = A60B14 + B15A70 + B24A72 + A73B34 + B64A54 + A55B74 + A64B76 + B77A74

C05 = A01B04 + B05A11 + B07A20 + A21B17 + B45A04 + A05B55 + A07B64 + B65A17

C15 = B14A01 + A11B15 + A30B07 + B17A31 + A14B45 + B55A15 + B74A07 + A17B75

C25 = B25A00 + A01B35 + A21B26 + B27A31 + A25B44 + B45A35 + B65A26 + A27B75

C35 = A10B25 + B35A11 + B36A21 + A31B37 + B54A25 + A35B55 + A36B65 + B75A37

C45 = B05A40 + A41B15 + A43B24 + B25A53 + A45B44 + B45A55 + B47A64 + A65B57

C55 = A50B05 + B15A51 + B34A43 + A53B35 + B54A45 + A55B55 + A74B47 + B57A75

C65 = A61B04 + B05A71 + B25A62 + A63B35 + B65A44 + A45B75 + A65B66 + B67A75

C75 = B14A61 + A71B15 + A72B25 + B35A73 + A54B65 + B75A55 + B76A65 + A75B77

C06 = A02B04 + B14A03 + B06A22 + A32B07 + B46A04 + A14B47 + A06B66 + B76A07

C16 = B04A12 + A13B14 + A22B16 + B17A32 + A04B56 + B57A14 + B66A16 + A17B76

C26 = B24A02 + A12B25 + A22B26 + B36A23 + A24B46 + B56A25 + B66A26 + A36B67

C36 = A02B34 + B35A12 + B26A32 + A33B36 + B46A34 + A35B56 + A26B76 + B77A36

C46 = B06A40 + A50B07 + A42B26 + B36A43 + A46B44 + B54A47 + B46A66 + A76B47

C56 = A40B16 + B17A50 + B26A52 + A53B36 + B44A56 + A57B54 + A66B56 + B57A76

C66 = A60B06 + B16A61 + B26A62 + A72B27 + B64A46 + A56B65 + A66B66 + B76A67

C76 = B06A70 + A71B16 + A62B36 + B37A72 + A46B74 + B75A56 + B66A76 + A77B76

C07 = B05A02 + A03B15 + A23B06 + B07A33 + A05B46 + B47A15 + B67A06 + A07B77

C17 = A12B05 + B15A13 + B16A23 + A33B17 + B56A05 + A15B57 + A16B67 + B77A17

C27 = A03B24 + B25A13 + B27A22 + A23B37 + B47A24 + A25B57 + A27B66 + B67A37

C37 = B34A03 + A13B35 + A32B27 + B37A33 + A34B47 + B57A35 + B76A27 + A37B77

C47 = A41B06 + B07A51 + B27A42 + A43B37 + B45A46 + A47B55 + A67B46 + B47A77

C57 = B16A41 + A51B17 + A52B27 + B37A53 + A56B45 + B55A57 + B56A67 + A77B57

C67 = B07A60 + A61B17 + A63B26 + B27A73 + A47B64 + B65A57 + B67A66 + A67B77

C77 = A70B07 + B17A71 + B36A63 + A73B37 + B74A47 + A57B75 + A76B67 + B77A77
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APPENDIX B (page a)— the 32 element basis matrices for H×O

e0 = e1 = e2 = e3 =0BBBBBBBBBBBBBBBBB�+1 . . . . . . .

. +1 . . . . . .

. . +1 . . . . .

. . . +1 . . . .

. . . . +1 . . .

. . . . . +1 . .

. . . . . . +1 .

. . . . . . . +1

1CCCCCCCCCCCCCCCCCA 0BBBBBBBBBBBBBBBBB� . −1 . . . . . .

+1 . . . . . . .

. . . +1 . . . .

. . −1 . . . . .

. . . . . +1 . .

. . . . −1 . . .

. . . . . . . −1

. . . . . . +1 .

1CCCCCCCCCCCCCCCCCA 0BBBBBBBBBBBBBBBBB� . . −1 . . . . .

. . . −1 . . . .

+1 . . . . . . .

. +1 . . . . . .

. . . . . . +1 .

. . . . . . . +1

. . . . −1 . . .

. . . . . −1 . .

1CCCCCCCCCCCCCCCCCA 0BBBBBBBBBBBBBBBBB� . . . −1 . . . .

. . +1 . . . . .

. −1 . . . . . .

+1 . . . . . . .

. . . . . . . +1

. . . . . . −1 .

. . . . . +1 . .

. . . . −1 . . .

1CCCCCCCCCCCCCCCCCA
e4 = e5 = e6 = e7 =0BBBBBBBBBBBBBBBBB� . . . . −1 . . .

. . . . . −1 . .

. . . . . . −1 .

. . . . . . . −1

+1 . . . . . . .

. +1 . . . . . .

. . +1 . . . . .

. . . +1 . . . .

1CCCCCCCCCCCCCCCCCA 0BBBBBBBBBBBBBBBBB� . . . . . −1 . .

. . . . +1 . . .

. . . . . . . +1

. . . . . . −1 .

. −1 . . . . . .

+1 . . . . . . .

. . . +1 . . . .

. . −1 . . . . .

1CCCCCCCCCCCCCCCCCA 0BBBBBBBBBBBBBBBBB� . . . . . . −1 .

. . . . . . . −1

. . . . +1 . . .

. . . . . +1 . .

. . −1 . . . . .

. . . −1 . . . .

+1 . . . . . . .

. +1 . . . . . .

1CCCCCCCCCCCCCCCCCA 0BBBBBBBBBBBBBBBBB� . . . . . . . −1

. . . . . . +1 .

. . . . . −1 . .

. . . . +1 . . .

. . . −1 . . . .

. . +1 . . . . .

. −1 . . . . . .

+1 . . . . . . .

1CCCCCCCCCCCCCCCCCA
i× e0 = i× e1 = i× e2 = i× e3 =0BBBBBBBBBBBBBBBBB� . −1 . . . . . .

+1 . . . . . . .

. . . −1 . . . .

. . +1 . . . . .

. . . . . +1 . .

. . . . −1 . . .

. . . . . . . +1

. . . . . . −1 .

1CCCCCCCCCCCCCCCCCA 0BBBBBBBBBBBBBBBBB�−1 . . . . . . .

. −1 . . . . . .

. . +1 . . . . .

. . . +1 . . . .

. . . . −1 . . .

. . . . . −1 . .

. . . . . . +1 .

. . . . . . . +1

1CCCCCCCCCCCCCCCCCA 0BBBBBBBBBBBBBBBBB� . . . +1 . . . .

. . −1 . . . . .

. −1 . . . . . .

+1 . . . . . . .

. . . . . . . +1

. . . . . . −1 .

. . . . . −1 . .

. . . . +1 . . .

1CCCCCCCCCCCCCCCCCA 0BBBBBBBBBBBBBBBBB� . . −1 . . . . .

. . . −1 . . . .

−1 . . . . . . .

. −1 . . . . . .

. . . . . . −1 .

. . . . . . . −1

. . . . −1 . . .

. . . . . −1 . .

1CCCCCCCCCCCCCCCCCA
i× e4 = i× e5 = i× e6 = i× e7 =0BBBBBBBBBBBBBBBBB� . . . . . +1 . .

. . . . −1 . . .

. . . . . . . +1

. . . . . . −1 .

. +1 . . . . . .

−1 . . . . . . .

. . . +1 . . . .

. . −1 . . . . .

1CCCCCCCCCCCCCCCCCA 0BBBBBBBBBBBBBBBBB� . . . . −1 . . .

. . . . . −1 . .

. . . . . . +1 .

. . . . . . . +1

+1 . . . . . . .

. +1 . . . . . .

. . −1 . . . . .

. . . −1 . . . .

1CCCCCCCCCCCCCCCCCA 0BBBBBBBBBBBBBBBBB� . . . . . . . +1

. . . . . . −1 .

. . . . . −1 . .

. . . . +1 . . .

. . . −1 . . . .

. . +1 . . . . .

. +1 . . . . . .

−1 . . . . . . .

1CCCCCCCCCCCCCCCCCA 0BBBBBBBBBBBBBBBBB� . . . . . . −1 .

. . . . . . . −1

. . . . −1 . . .

. . . . . −1 . .

. . +1 . . . . .

. . . +1 . . . .

+1 . . . . . . .

. +1 . . . . . .

1CCCCCCCCCCCCCCCCCA
j × e0 = j × e1 = j × e2 = j × e3 =0BBBBBBBBBBBBBBBBB� . . . . . . . −1

. . . . . . −1 .

. . . . . +1 . .

. . . . +1 . . .

. . . −1 . . . .

. . −1 . . . . .

. +1 . . . . . .

+1 . . . . . . .

1CCCCCCCCCCCCCCCCCA 0BBBBBBBBBBBBBBBBB� . . . . . . −1 .

. . . . . . . +1

. . . . +1 . . .

. . . . . −1 . .

. . −1 . . . . .

. . . +1 . . . .

+1 . . . . . . .

. −1 . . . . . .

1CCCCCCCCCCCCCCCCCA 0BBBBBBBBBBBBBBBBB� . . . . . +1 . .

. . . . +1 . . .

. . . . . . . +1

. . . . . . +1 .

. −1 . . . . . .

−1 . . . . . . .

. . . −1 . . . .

. . −1 . . . . .

1CCCCCCCCCCCCCCCCCA 0BBBBBBBBBBBBBBBBB� . . . . −1 . . .

. . . . . +1 . .

. . . . . . −1 .

. . . . . . . +1

+1 . . . . . . .

. −1 . . . . . .

. . +1 . . . . .

. . . −1 . . . .

1CCCCCCCCCCCCCCCCCA
j × e4 = j × e5 = j × e6 = j × e7 =0BBBBBBBBBBBBBBBBB� . . . −1 . . . .

. . −1 . . . . .

. +1 . . . . . .

+1 . . . . . . .

. . . . . . . +1

. . . . . . +1 .

. . . . . −1 . .

. . . . −1 . . .

1CCCCCCCCCCCCCCCCCA 0BBBBBBBBBBBBBBBBB� . . −1 . . . . .

. . . +1 . . . .

+1 . . . . . . .

. −1 . . . . . .

. . . . . . +1 .

. . . . . . . −1

. . . . −1 . . .

. . . . . +1 . .

1CCCCCCCCCCCCCCCCCA 0BBBBBBBBBBBBBBBBB� . −1 . . . . . .

−1 . . . . . . .

. . . −1 . . . .

. . −1 . . . . .

. . . . . −1 . .

. . . . −1 . . .

. . . . . . . −1

. . . . . . −1 .

1CCCCCCCCCCCCCCCCCA 0BBBBBBBBBBBBBBBBB�+1 . . . . . . .

. −1 . . . . . .

. . +1 . . . . .

. . . −1 . . . .

. . . . +1 . . .

. . . . . −1 . .

. . . . . . +1 .

. . . . . . . −1

1CCCCCCCCCCCCCCCCCA
k× e0 = k× e1 = k× e2 = k× e3 =0BBBBBBBBBBBBBBBBB� . . . . . . −1 .

. . . . . . . +1

. . . . −1 . . .

. . . . . +1 . .

. . +1 . . . . .

. . . −1 . . . .

+1 . . . . . . .

. −1 . . . . . .

1CCCCCCCCCCCCCCCCCA 0BBBBBBBBBBBBBBBBB� . . . . . . . +1

. . . . . . +1 .

. . . . . +1 . .

. . . . +1 . . .

. . . −1 . . . .

. . −1 . . . . .

. −1 . . . . . .

−1 . . . . . . .

1CCCCCCCCCCCCCCCCCA 0BBBBBBBBBBBBBBBBB� . . . . +1 . . .

. . . . . −1 . .

. . . . . . −1 .

. . . . . . . +1

−1 . . . . . . .

. +1 . . . . . .

. . +1 . . . . .

. . . −1 . . . .

1CCCCCCCCCCCCCCCCCA 0BBBBBBBBBBBBBBBBB� . . . . . +1 . .

. . . . +1 . . .

. . . . . . . −1

. . . . . . −1 .

. −1 . . . . . .

−1 . . . . . . .

. . . +1 . . . .

. . +1 . . . . .

1CCCCCCCCCCCCCCCCCA
k× e4 = k× e5 = k× e6 = k× e7 =0BBBBBBBBBBBBBBBBB� . . −1 . . . . .

. . . +1 . . . .

−1 . . . . . . .

. +1 . . . . . .

. . . . . . −1 .

. . . . . . . +1

. . . . −1 . . .

. . . . . +1 . .

1CCCCCCCCCCCCCCCCCA 0BBBBBBBBBBBBBBBBB� . . . +1 . . . .

. . +1 . . . . .

. +1 . . . . . .

+1 . . . . . . .

. . . . . . . +1

. . . . . . +1 .

. . . . . +1 . .

. . . . +1 . . .

1CCCCCCCCCCCCCCCCCA 0BBBBBBBBBBBBBBBBB�+1 . . . . . . .

. −1 . . . . . .

. . −1 . . . . .

. . . +1 . . . .

. . . . +1 . . .

. . . . . −1 . .

. . . . . . −1 .

. . . . . . . +1

1CCCCCCCCCCCCCCCCCA 0BBBBBBBBBBBBBBBBB� . +1 . . . . . .

+1 . . . . . . .

. . . −1 . . . .

. . −1 . . . . .

. . . . . +1 . .

. . . . +1 . . .

. . . . . . . −1

. . . . . . −1 .

1CCCCCCCCCCCCCCCCCA
H× O ⊂M[×](8, R) the 32 element basis matrices for H×O
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APPENDIX B (page b)— the remaining 32 element basis matrices for M[×](8, R)

l× e0 = l× e1 = l× e2 = l× e3 =0BBBBBBBBBBBBBBBBB� . . . . . . . −1

. . . . . . −1 .

. . . . . −1 . .

. . . . −1 . . .

. . . −1 . . . .

. . −1 . . . . .

. −1 . . . . . .

−1 . . . . . . .

1CCCCCCCCCCCCCCCCCA 0BBBBBBBBBBBBBBBBB� . . . . . . −1 .

. . . . . . . +1

. . . . −1 . . .

. . . . . +1 . .

. . −1 . . . . .

. . . +1 . . . .

−1 . . . . . . .

. +1 . . . . . .

1CCCCCCCCCCCCCCCCCA 0BBBBBBBBBBBBBBBBB� . . . . . +1 . .

. . . . +1 . . .

. . . . . . . −1

. . . . . . −1 .

. +1 . . . . . .

+1 . . . . . . .

. . . −1 . . . .

. . −1 . . . . .

1CCCCCCCCCCCCCCCCCA 0BBBBBBBBBBBBBBBBB� . . . . −1 . . .

. . . . . +1 . .

. . . . . . +1 .

. . . . . . . −1

−1 . . . . . . .

. +1 . . . . . .

. . +1 . . . . .

. . . −1 . . . .

1CCCCCCCCCCCCCCCCCA
l× e4 = l× e5 = l× e6 = l× e7 =0BBBBBBBBBBBBBBBBB� . . . −1 . . . .

. . −1 . . . . .

. −1 . . . . . .

−1 . . . . . . .

. . . . . . . +1

. . . . . . +1 .

. . . . . +1 . .

. . . . +1 . . .

1CCCCCCCCCCCCCCCCCA 0BBBBBBBBBBBBBBBBB� . . −1 . . . . .

. . . +1 . . . .

−1 . . . . . . .

. +1 . . . . . .

. . . . . . +1 .

. . . . . . . −1

. . . . +1 . . .

. . . . . −1 . .

1CCCCCCCCCCCCCCCCCA 0BBBBBBBBBBBBBBBBB� . +1 . . . . . .

+1 . . . . . . .

. . . −1 . . . .

. . −1 . . . . .

. . . . . −1 . .

. . . . −1 . . .

. . . . . . . +1

. . . . . . +1 .

1CCCCCCCCCCCCCCCCCA 0BBBBBBBBBBBBBBBBB�−1 . . . . . . .

. +1 . . . . . .

. . +1 . . . . .

. . . −1 . . . .

. . . . +1 . . .

. . . . . −1 . .

. . . . . . −1 .

. . . . . . . +1

1CCCCCCCCCCCCCCCCCA
l× (i× e0) = l× (i× e1) = l× (i× e2) = l× (i× e3) =0BBBBBBBBBBBBBBBBB� . . . . . . +1 .

. . . . . . . −1

. . . . −1 . . .

. . . . . +1 . .

. . −1 . . . . .

. . . +1 . . . .

+1 . . . . . . .

. −1 . . . . . .

1CCCCCCCCCCCCCCCCCA 0BBBBBBBBBBBBBBBBB� . . . . . . . −1

. . . . . . −1 .

. . . . . +1 . .

. . . . +1 . . .

. . . +1 . . . .

. . +1 . . . . .

. −1 . . . . . .

−1 . . . . . . .

1CCCCCCCCCCCCCCCCCA 0BBBBBBBBBBBBBBBBB� . . . . +1 . . .

. . . . . −1 . .

. . . . . . +1 .

. . . . . . . −1

+1 . . . . . . .

. −1 . . . . . .

. . +1 . . . . .

. . . −1 . . . .

1CCCCCCCCCCCCCCCCCA 0BBBBBBBBBBBBBBBBB� . . . . . +1 . .

. . . . +1 . . .

. . . . . . . +1

. . . . . . +1 .

. +1 . . . . . .

+1 . . . . . . .

. . . +1 . . . .

. . +1 . . . . .

1CCCCCCCCCCCCCCCCCA
l× (i× e4) = l× (i× e5) = l× (i× e6) = l× (i× e7) =0BBBBBBBBBBBBBBBBB� . . +1 . . . . .

. . . −1 . . . .

−1 . . . . . . .

. +1 . . . . . .

. . . . . . +1 .

. . . . . . . −1

. . . . −1 . . .

. . . . . +1 . .

1CCCCCCCCCCCCCCCCCA 0BBBBBBBBBBBBBBBBB� . . . −1 . . . .

. . −1 . . . . .

. +1 . . . . . .

+1 . . . . . . .

. . . . . . . −1

. . . . . . −1 .

. . . . . +1 . .

. . . . +1 . . .

1CCCCCCCCCCCCCCCCCA 0BBBBBBBBBBBBBBBBB�−1 . . . . . . .

. +1 . . . . . .

. . −1 . . . . .

. . . +1 . . . .

. . . . +1 . . .

. . . . . −1 . .

. . . . . . +1 .

. . . . . . . −1

1CCCCCCCCCCCCCCCCCA 0BBBBBBBBBBBBBBBBB� . −1 . . . . . .

−1 . . . . . . .

. . . −1 . . . .

. . −1 . . . . .

. . . . . +1 . .

. . . . +1 . . .

. . . . . . . +1

. . . . . . +1 .

1CCCCCCCCCCCCCCCCCA
l× (j × e0) = l× (j × e1) = l× (j × e2) = l× (j × e3) =0BBBBBBBBBBBBBBBBB�+1 . . . . . . .

. +1 . . . . . .

. . −1 . . . . .

. . . −1 . . . .

. . . . −1 . . .

. . . . . −1 . .

. . . . . . +1 .

. . . . . . . +1

1CCCCCCCCCCCCCCCCCA 0BBBBBBBBBBBBBBBBB� . −1 . . . . . .

+1 . . . . . . .

. . . −1 . . . .

. . +1 . . . . .

. . . . . −1 . .

. . . . +1 . . .

. . . . . . . −1

. . . . . . +1 .

1CCCCCCCCCCCCCCCCCA 0BBBBBBBBBBBBBBBBB� . . +1 . . . . .

. . . +1 . . . .

+1 . . . . . . .

. +1 . . . . . .

. . . . . . −1 .

. . . . . . . −1

. . . . −1 . . .

. . . . . −1 . .

1CCCCCCCCCCCCCCCCCA 0BBBBBBBBBBBBBBBBB� . . . +1 . . . .

. . −1 . . . . .

. −1 . . . . . .

+1 . . . . . . .

. . . . . . . −1

. . . . . . +1 .

. . . . . +1 . .

. . . . −1 . . .

1CCCCCCCCCCCCCCCCCA
l× (j × e4) = l× (j × e5) = l× (j × e6) = l× (j × e7) =0BBBBBBBBBBBBBBBBB� . . . . +1 . . .

. . . . . +1 . .

. . . . . . −1 .

. . . . . . . −1

+1 . . . . . . .

. +1 . . . . . .

. . −1 . . . . .

. . . −1 . . . .

1CCCCCCCCCCCCCCCCCA 0BBBBBBBBBBBBBBBBB� . . . . . +1 . .

. . . . −1 . . .

. . . . . . . +1

. . . . . . −1 .

. −1 . . . . . .

+1 . . . . . . .

. . . −1 . . . .

. . +1 . . . . .

1CCCCCCCCCCCCCCCCCA 0BBBBBBBBBBBBBBBBB� . . . . . . +1 .

. . . . . . . +1

. . . . +1 . . .

. . . . . +1 . .

. . +1 . . . . .

. . . +1 . . . .

+1 . . . . . . .

. +1 . . . . . .

1CCCCCCCCCCCCCCCCCA 0BBBBBBBBBBBBBBBBB� . . . . . . . +1

. . . . . . −1 .

. . . . . −1 . .

. . . . +1 . . .

. . . +1 . . . .

. . −1 . . . . .

. −1 . . . . . .

+1 . . . . . . .

1CCCCCCCCCCCCCCCCCA
l× (k× e0) = l× (k× e1) = l× (k× e2) = l× (k× e3) =0BBBBBBBBBBBBBBBBB� . +1 . . . . . .

−1 . . . . . . .

. . . −1 . . . .

. . +1 . . . . .

. . . . . +1 . .

. . . . −1 . . .

. . . . . . . −1

. . . . . . +1 .

1CCCCCCCCCCCCCCCCCA 0BBBBBBBBBBBBBBBBB�+1 . . . . . . .

. +1 . . . . . .

. . +1 . . . . .

. . . +1 . . . .

. . . . −1 . . .

. . . . . −1 . .

. . . . . . −1 .

. . . . . . . −1

1CCCCCCCCCCCCCCCCCA 0BBBBBBBBBBBBBBBBB� . . . −1 . . . .

. . +1 . . . . .

. −1 . . . . . .

+1 . . . . . . .

. . . . . . . −1

. . . . . . +1 .

. . . . . −1 . .

. . . . +1 . . .

1CCCCCCCCCCCCCCCCCA 0BBBBBBBBBBBBBBBBB� . . +1 . . . . .

. . . +1 . . . .

−1 . . . . . . .

. −1 . . . . . .

. . . . . . +1 .

. . . . . . . +1

. . . . −1 . . .

. . . . . −1 . .

1CCCCCCCCCCCCCCCCCA
l× (k× e4) = l× (k× e5) = l× (k× e6) = l× (k× e7) =0BBBBBBBBBBBBBBBBB� . . . . . +1 . .

. . . . −1 . . .

. . . . . . . −1

. . . . . . +1 .

. −1 . . . . . .

+1 . . . . . . .

. . . +1 . . . .

. . −1 . . . . .

1CCCCCCCCCCCCCCCCCA 0BBBBBBBBBBBBBBBBB� . . . . −1 . . .

. . . . . −1 . .

. . . . . . −1 .

. . . . . . . −1

−1 . . . . . . .

. −1 . . . . . .

. . −1 . . . . .

. . . −1 . . . .

1CCCCCCCCCCCCCCCCCA 0BBBBBBBBBBBBBBBBB� . . . . . . . −1

. . . . . . +1 .

. . . . . −1 . .

. . . . +1 . . .

. . . +1 . . . .

. . −1 . . . . .

. +1 . . . . . .

−1 . . . . . . .

1CCCCCCCCCCCCCCCCCA 0BBBBBBBBBBBBBBBBB� . . . . . . +1 .

. . . . . . . +1

. . . . −1 . . .

. . . . . −1 . .

. . −1 . . . . .

. . . −1 . . . .

+1 . . . . . . .

. +1 . . . . . .

1CCCCCCCCCCCCCCCCCA
H× O + l× (H×O) ∼= M[×](8, R) the remaining 32 of 64 element basis matrices for M[×](8, R)
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C.1

APPENDIX C

the × product in the hexpentaquaternion algebra (Xn,×)

× E IA JA KA IR JR KR IM JM KM IL JL KL IZ JZ KZ

E E IA JA KA IR JR KR IM JM KM IL JL KL IZ JZ KZ

IA IA E −KL −JR −JM −KA JZ IZ −IR −IL −KM KZ −JA IM KR JL

JA JA KL E −IZ KR −IM IR −JR JZ −JL −KZ −KM IA −KA JM −IL

KA KA JR −IZ E −JL IA KM −KL −KZ KR JZ −IR −IM −JA IL −JM

IR IR JM KR −JL −E −KZ −JA −IL −IA IZ IM KA JZ −KM −KL JR

JR JR KA IM −IA −KZ −E −IL −JA −JL JZ KR JM IZ −KL −KM IR

KR KR −JZ IR −KM −JA IL −E KZ KL KA −JR IZ −JM −JL IA −IM

IM IM IZ JR KL −IL JA −KZ E −KM −JM −IR −JZ KA IA −JL −KR

JM JM IR JZ −KZ IA −JL KL −KM E −IM −IZ −JR KR −IL JA −KA

KM KM IL JL −KR −IZ −JZ −KA −JM −IM E IA JA KZ −IR −JR KL

IL IL KM KZ −JZ IM −KR JR −IR IZ −IA −E −KL JL −JM KA −JA

JL JL −KZ KM −IR KA JM IZ JZ −JR −JA KL −E −IL −KR −IM IA

KL KL JA −IA IM JZ IZ −JM −KA KR −KZ −JL IL −E −JR −IR KM

IZ IZ IM −KA −JA KM −KL −JL IA IL IR JM −KR −JR E −KZ −JZ

JZ JZ −KR JM −IL −KL KM −IA JL JA JR −KA IM −IR −KZ E −IZ

KZ KZ −JL IL −JM JR IR IM KR −KA −KL JA −IA −KM −JZ −IZ E

[DD] Jamil Daboul, Robert Delbourgo Matrix Representation of Octonions and Generalizations, (1999). arXiv:hep-th/9906065
[YT] Yongge Tian Matrix Representations of Octonions and Their Applications, June 13, 2000;. arXiv:math/0003166
[PJ2] P.M. Jack Hexpentaquaternions: a two-hand quaternion algebra, Jan 29, 2006.
[PJ1] P.M. Jack Physical Space as a Quaternion Structure, I: Maxwell Equations. A Brief Note., 2003. arXiv:math-ph/030738
[WS] Warren D. Smith Quaternions, octonions, and now, 16-ons and 2n-ons; New kinds of numbers, Feb 14, 2004.
[CS] J.H. Conway & D.A. Smith On Quaternions and Octonions, 2003, A.K. Peters, Ltd., ISBN 1-56881-134-9
[1] Sometimes the Cayley-Dickson process is generalized with an extra field parameter, µ, thus one finds, (A,B)(C, D)I =

(AC ± µDB∗, A∗D + CB), or (A, B)(C,D)II = (AC ± µD∗B, DA + BC∗). A more modern “Conway-Smith process”
introduces the form, (A,B)(C, D) = (AC − (BD∗)∗, (B∗C∗)∗ + (B∗(A∗((B−1)∗D∗)∗)∗)∗), to be used when B 6= 0, and
replaced by, (A, B)(C,D) = (AC,A∗D), if B = 0. This process produces the same four normed division algebras as the
Cayley-Dickson Process, where the formula is equivalent to construction (I), but then results in a different set of uniquely
distinct “Conway-Smith algebras” beyond the octonions. The main advantage of this modification is that one recovers the
law that the product of two sums of n squares a is sum of n squares. see eq.68 of [WS], and pg.79 of [CS] for their (II) form.

[2] The ⊢ and ⊣ symbols indicate division from the left and right, B\A =
A

⊢ B
= B−1A and A/B =

A

B ⊣
= AB−1.

[3] The “alternating complex numbers” were first discovered in 1849 by James Cockle and called “coquaternions.” Other
names appearing in the literature for these same 4-dimensional numbers are the “split-quaternions” and the “hyperbolic
quaternions.” The symbol Ḧ we’ve selected for them reflects the “split” character, hence the two dots ¨. However, in this
paper we prefer to refer to their “alternating” character.
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hypx-20071128aGeneral solutions to linear problems in quaternion variables.Peter Mihael Jak�Hyperomplex SystemsToronto, Canada y(Dated: November 29, 2007)We present a method to solve linear quaternion problems using the right and left hand forms of thequaternion. This tehnique was �rst introdued in our previous paper on hexpentaquaternions, butparts of the method were only skethed out there. In this paper, we give all the remaining spei�details for solving linear quaternion equations and their orresponding linear systems. The quater-nion expansion of the determinant, and quaternion expansion of the adjoint matrix, for any real foursquare matrix, are also given, and provide the keys to the general solutions. A previous unsolvedquaternion problem is then solved to illustrate the e�etiveness of the two-hand quaternions.. INTRODUCTION .In a previous paper[1�℄ [PJ2℄, we introdued a method for solving linear quaternion equations, by inluding bothright handed and left handed quaternions in the same algebra. Prior high art followed Hamilton's method of writingthe quaternion as the sum of salar and vetor, q = Sq + V q, in the method of solutions, while working entirelyin the right hand quaternion system alone[1℄. This method had a number of drawbaks, making solutions to manyproblems diÆult, umbersome, and non-intuitive. The alternative low art method of rekoning with the omponents,q = q0 + q1i + q2j + q3k, was often resorted to in takling many types of problems. In both of these methods thequaternion had to be broken up into parts just to reason with these non-abelian numbers. In our two-hand quaternionmethod, we don't break the quaternion up, instead we employ the two operations of onjugation � and handtransformation 0 to modify expressions and manipulate them into useful alternative forms. This algebra possesses theusual assoiative and distributive laws of ordinary algebra, while inorporating speial ommutative laws that enableus to move things around and e�et solutions. The �rst speial ommutative law is, qB = B0q̂, where, q; B 2 HRand B0 2 H L . This allows us to indue a permutation of parameters in ases where the initial pair of quaternionsin the binary produt are of the same hand. The seond speial ommutative law is, AB0 = B0A, where, A 2 HRand B0 2 H L . This tells us that right handed and left handed quaternions ommute with eah other. The thirdommutative priniple we make use of is that salars ommute with all numbers, so we reognise those speial ombina-tions of quaternions that are salar, AA� 2 R and A+A� 2 R, et., and use this fat to permute fators in expressions.When A;B 2 HR , then, A�; B� 2 HR , and A0; B0; A0�; B0� 2 H L , and we reall some useful rules,(A�)� = A (A0)0 = A A�1 = A�=jAj2AB 6= BA A0B0 6= B0A0 AB0 = B0A(AB)� = B�A� (AB)0 = B0A0 (A0B0)0 = BA(AB0)� = B0�A� = A�B0� (AB0)0 = BA0 = A0B (A�)0 = (A0)�AA�; A+A� 2 R AA� = A�A = A0A0� = jAj2 A+A� = A0 +A0�These are essentially all the speial rules[2℄ we need in working out solutions, and together with the usual rulesommon to ordinary algebra, we an solve these linear problems. Hamilton's quaternions traditionally use the symbol,H , but they are right handed only. Sine we're working with both hands, we add a subsript and write, HR , for theusual right handed quaternions, and, H L , for the orresponding left handed quaternions. But, when a number ontainsa mix of both hands, it's referred to as an hexpe(two-hand quaternion, hexpentaquaternion) number, Xn. We alsosometimes use the terms \ hand " and \ handed " interhangeably, prefering the shorter word to the longer, but usingthe latter whenever distintion needs to be made between the \ right hand side " parameter and the \ right handed "parameter, or in other situations where greater lari�ation helps. Having said this, all problems onsidered in thispaper are initially stated in the right hand quaternion algebra, and the left hand is introdued to failitate rekoning.�Alumnus of the Physis Department of Columbia University, NY.yEletroni address: math�hyperomplex.om
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2I. LINEAR EQUATIONS IN ONE VARIABLE.A1qB1 = C (1)A1qB1 +A2qB2 = C (2)A1qB1 +A2qB2 +A3qB3 = C (3)...A1qB1 +A2qB2 + � � �+AnqBn = C (4)With all parameters being right hand quaternions, q; Ak; Bk; C 2 HR ; k = 1; ::; n, the above linear equations in oneunknown, q, are now to be solved; �rst, for n � 3, then another way for all n. The �rst equation (1) is straightforward,and is easily solved within right hand algebra. However, we illustrate the two-hand method for ompleteness,A1qB1 = C (1)A1B01q̂ = Ĉ (5)A�1A1B01q̂ = A�1Ĉ (6)jA1j2B0�1 B01q̂ = B0�1 A�1Ĉ (7)jA1j2jB1j2q̂ = A�1B0�1 Ĉ (8)q̂ = 1jA1j2jB1j2 �A�1B0�1 Ĉ (9)q = 1jA1j2jB1j2 �A�1CB�1 (10)Of ourse , we ould write this as, q = A�11 CB�11 , whih is the form readily reognised from the obvious one-handsolution method. But, a few points are illustrated here. The ommutative law, qB1 = B01q̂, is used to indue the�rst permutation. The right handed quaternion, B1, moves from the r-h-s over to the l-h-s of the q parameterand hanges it's handedness from right-handed to left-handed; B1 ! B01 2 H L . Meanwhile, the �xed quaternionparameter takes on a hat, q̂, to indiate that it is being used as the pivot about whih parameter movementsare made. This is the ommutative law for pivots, given in our previous paper[1�℄ [PJ2℄. The inhomogeneousparameter is also promoted to pivot status, so it gets hatted by a aret also; C ! Ĉ . This proedure transformsthe problem from the one-hand quaternion algebra into the equivalent two-hand quaternion algebra format. Wethen proeed in the usual manner to �nd appropriate fators to redue the known quaternions to salar numbers onthe l-h-s of the equation. While, on the r-h-s of the equation we apply the seond ommutative law that allowsus to permute right-handed with left-handed quaternions, B0�1 A�1 = A�1B0�1 . Finally, one we have the unknownby itself on the l-h-s of the equation, we use the ommutative law for pivots again, B0�1 Ĉ = CB�1 , allowing usto remove the aret ^ from the quaternions, and present the solution entirely in the right hand quaternion algebra, HR .The seond equation (2) is substantially more involved, but the basi ideas are all illustrated above in the solutionto the �rst. Now we have to ontend with variable parameters that are mixes of right and left quaternions, i.e. generalhexpe numbers from the set, Xn; and need to redue these two-hand quaternions to salars. We'd proeed as follows,A1qB1 +A2qB2 = C (2)A1B01q̂ +A2B02q̂ = Ĉ (11)(A1B01 +A2B02)q̂ = Ĉ (12)q̂ = (A1B01 +A2B02)�1Ĉ (13)We have our unknown by itself on one side, but to omplete this solution we need to �nd that inverse fator. Nowwe reall the fat that every hexpe number an be expressed as the sum of pair produts, where eah pair has oneright and one left hand quaternion, therefore we an always write this inverse fator in the form,(A1B01 +A2B02)�1 = (P1Q01 + P2Q02 + :::+ PmQ0m) where, Pk; Qk 2 HR (14)
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3whene, q̂ = (P1Q01 + P2Q02 + � � �+ PmQ0m)Ĉ (15)= P1Q01Ĉ + P2Q02Ĉ + � � �+ PmQ0mĈ (16)q = P1CQ1 + P2CQ2 + � � �+ PmCQm (17)and we have our solution. What we need, however, is to �nd the fPk; Qkg in terms of the the fAk; Bkg(our previouspaper[1�℄ [PJ2℄ left out these spei� details, so in this paper we now omplete the method, showing all working art.).Let us then introdue a few new parameters, h; g; Fk; k = 1; 2; with,h = A1B01 +A2B02 (18)g = A�1F 01 +A�2F 02 where, F1; F2 2 HR (19)) gh = (A�1F 01 +A�2F 02)(A1B01 +A2B02) (20)= A�1F 01A1B01 +A�2F 02A2B02 +A�1F 01A2B02 +A�2F 02A1B01 (21)= A�1A1F 01B01 +A�2A2F 02B02 +A�1A2F 01B02 +A�2A1F 02B01 (22)= jA1j2F 01B01 + jA2j2F 02B02 +A�1A2F 01B02 +A�2A1F 02B01 (23)and now pik, F1; F2, so that, F 02B01 = F 01B02, and therefore, F 02 = F 01(B02=B01), and we then have, gh 2 H L , i.e.,gh = jA1j2F 01B01 + jA2j2F 01(B02=B01)B02 + (A�1A2 +A�2A1)F 01B02 2 H L (24)sine, jA1j2; jA2j2; (A�1A2 +A�2A1) = (A�1A2 + (A�1A2)�) 2 R (25)Now that gh is a one-hand quaternion, we know its inverse, (gh)�1 = (gh)�=jghj2, we an write, h�1 = (gh)�g=jghj2.That is, we an solve, hq̂ = Ĉ ! h�1hq̂ = h�1Ĉ ! 1q̂ = h�1Ĉ, and this h�1 is a left side inverse of h. But,sine all h 2 Xn are representable by 4� 4 matries over reals, the left side inverse is also the right side inverse. Theexpression, (B02=B01), an be written, (B02B0�1 )=jB1j2, and, to remove the dividing term, we then pik F 01 = +jB1j. So,g = A�1jB1j+A�2B02B0�1 =jB1j (26)gh = jA1j2jB1jB01 + (jA2j2=jB1j)B02B0�1 B02 + (A�1A2 +A�2A1)jB1jB02 2 H L (27)(gh)�g = jA1j2A�1jB1j2B0�1 + jA2j2A�1B0�2 B01B0�2 + (A�1A2 +A�2A1)A�1B0�2 jB1j2 (28)+ jA1j2A�2B0�1 B02B0�1 + jA2j2A�2B0�2 jB2j2 + (A�1A2 +A�2A1)A�2B0�1 jB2j2= A�1A1A�1B0�1 B01B0�1 +A�2A2A�1B0�2 B01B0�2 +A�1A2A�1B0�2 B01B0�1 +A�2A1A�1B0�2 B01B0�1 (29)+ A�1A1A�2B0�1 B02B0�1 +A�2A2A�2B0�2 B02B0�2 +A�1A2A�2B0�1 B02B0�2 +A�2A1A�2B0�1 B02B0�2Permuting various fators and moving terms around allows us to re-write this more symmetrially[3℄,(gh)�g = A�1 A1A�1 B0�1 B01B0�1+ A�1 A1A�2 B0�1 B01B0�2+ A�1 A2A�1 B0�1 B01B0�2+ A�1 A2A�2 B0�1 B02B0�2 (30)+ A�2 A1A�1 B0�1 B02B0�1+ A�2 A1A�2 B0�2 B02B0�1+ A�2 A2A�1 B0�2 B01B0�2+ A�2 A2A�2 B0�2 B02B0�2Thus, in the eqns (14)-(17), apart from a salar fator in the denominator, the Pk have the form A�: A:A�: , while theQk have the form B�: B:B�: , where the subsript dot : is a plaeholder that represents the appropriate index. Thesolution therefore has the form, q = PA�: A:A�: CB�: B:B�:jghj2 (31)
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4We an write[4℄ jghj2 = (gh)�(gh) = (h�g�)(gh) = h�(g�g)h (32)Sine, g 2 Xn is not usually a one-hand quaternion, g�g =2 R. So, we an't just replae h�(g�g)h with (h�h)(g�g), wehave to work out the result of the transformation h�( )h on the value of g�g , instead.g�g = (A1jB1j+A2B01B0�2 =jB1j)(A�1jB1j+A�2B02B0�1 =jB1j) (33)= jA1j2jB1j2 + jA2j2jB2j2 +A1A�2B02B0�1 +A2A�1B01B0�2 (34)h�h = (A�1B0�1 +A�2B0�2 )(A1B01 +A2B02) (35)= jA1j2jB1j2 + jA2j2jB2j2 +A�1A2B0�1 B02 +A�2A1B0�2 B01 (36)h�(g�g)h = ( jA1j2jB1j2 + jA2j2jB2j2 )h�h+ h�( A1A�2B02B0�1 +A2A�1B01B0�2 )h (37)= ( jA1j2jB1j2 + jA2j2jB2j2 )2 + ( jA1j2jB1j2 + jA2j2jB2j2 )(A�1A2B0�1 B02 +A�2A1B0�2 B01) (38)+ (A�1B0�1 +A�2B0�2 )( A1A�2B02B0�1 +A2A�1B01B0�2 )(A1B01 +A2B02)= ( jA1j2jB1j2 + jA2j2jB2j2 )2+ ( jA1j2jB1j2 + jA2j2jB2j2 )((A�1A2) + (A�1A2)�)((B2B�1)0 + (B2B�1 )0�) (39)+ jB1j2jB2j2((A�1A2)2 + (A�1A2)2�) + jA1j2jA2j2(((B2B�1 )2)0 + ((B2B�1)2)0�)We then use the fat that expressions whih resolve to salar values an swap the hands throughout, e.g. A + A� =A0+A0�, et.. to write, (B2B�1)0+(B2B�1 )0� = (B2B�1 )+ (B2B�1 )�, et.. and re-express this whole result in right handquaternion parameters. Then we use the general result, (A+A�)2 � 2jAj2 = (A)2 + (A2)� , to simplify again, andif we let, 2� = A�1A2 + (A�1A2)�, and 2� = B�1B2 + (B�1B2)�, we an write this as[5℄,jghj2 = (jA1j2jB1j2 � jA2j2jB2j2)2 + 4( jA1j2jB1j2 + jA2j2jB2j2 )�� + 4jB1j2jB2j2�2 + 4jA1j2jA2j2�2The inverse fator from eq(13) is then,
(A1B01 +A2B02)�1 = 0BBBBBBBBBB�

(jA1j2jB1j2 + jA2j2jB2j2)(A�1B0�1 +A�2B0�2 ) + jA2j2A�1(B�2B1B�2)0+jA1j2A�2(B�1B2B�1 )0 + jB2j2A�2A1A�2B0�1 + jB1j2A�1A2A�1B0�2(jA1j2jB1j2 � jA2j2jB2j2)2 +4( jA1j2jB1j2 + jA2j2jB2j2 )�� + 4jB1j2jB2j2�2 + 4jA1j2jA2j2�2
1CCCCCCCCCCA (40)

and the �nal solution for q is,
q = 0BBBBBBBBBB�

(jA1j2jB1j2 + jA2j2jB2j2)(A�1CB�1 +A�2CB�2 ) + jA2j2A�1CB�2B1B�2+jA1j2A�2CB�1B2B�1 + jB2j2A�2A1A�2CB�1 + jB1j2A�1A2A�1CB�2(jA1j2jB1j2 � jA2j2jB2j2)2 +4( jA1j2jB1j2 + jA2j2jB2j2 )�� + 4jB1j2jB2j2�2 + 4jA1j2jA2j2�2
1CCCCCCCCCCA (41)

where, 2� = A�1A2 + (A�1A2)� ; 2� = B�1B2 + (B�1B2)�



5We an alternatively solve the equation (2) from the right side instead.A1qB1 +A2qB2 = C (2)q̂A01B1 + q̂A02B2 = Ĉ (42)q̂(A01B1 +A02B2) = Ĉ (43)q̂ = Ĉ(A01B1 +A02B2)�1 (44)Here we use the pivot ommutation law on the other side, A1q = q̂A01, and the Ak beome left-handed this time,while the Bk remain right-handed. Proeeding similarily, we introdue parameters, h�; g�; Fk; k = 1; 2;, with,h� = A01B1 +A02B2 (45)g� = A0�1 F1 +A0�2 F2 where, F1; F2 2 HR (46)) h�g� = jA1j2B1F1 + jA2j2B2F2 +A01A0�2 B1F2 +A02A0�1 B2F1 (47)then pik, F1; F2, so that, B1F2 = B2F1, and therefore, F2 = (B1nB2)F1, and we then have, h�g� 2 HR , with usualinverse, (h�g�)�1 = (h�g�)�=jh�g�j2, and, after working out, we �nd that the inverse fator from eq(44) is then,
(A01B1 +A02B2)�1 = 0BBBBBBBBBB�

(jA1j2jB1j2 + jA2j2jB2j2)(A0�1 B�1 +A0�2 B�2 ) + jA2j2A0�1 (B�2B1B�2)+jA1j2A0�2 (B�1B2B�1) + jB2j2(A�2A1A�2)0B�1 + jB1j2(A�1A2A�1)0B�2(jA1j2jB1j2 � jA2j2jB2j2)2 +4( jA1j2jB1j2 + jA2j2jB2j2 )�� + 4jB1j2jB2j2�2 + 4jA1j2jA2j2�2
1CCCCCCCCCCA (48)

where, 2� = A�1A2 + (A�1A2)� ; 2� = B�1B2 + (B�1B2)�Apart from the hand swapping, the intermediate steps of the proedure are very similar to that before, and the�nal solution is the same; Evaluating, q̂ = Ĉ(h�)�1, by applying the pivot ommutation law again, ĈA0�1 ! A�1C,et..results in the same expression for q given in eqn (41). Note that (48) is the hand transform of (40), i.e.(A01B1 +A02B2)�1 = ((A1B01)0 + (A2B02)0)�1 = ((A1B01 +A2B02)0)�1 = ((A1B01 +A2B02)�1)0 (49)so that, (h�)�1 = (h�1)0.We should point out that although we speak of splitting the quaternion representation into two states, q and q̂, inorder to e�et solutions, that hatted state is not idential between the two ommutes, qB = B0q̂ and Aq = q̂A0. Thisis not usually an issue sine we don't mix these two methods together when working out solutions|the whole objet,after all, is to be able to apply the distributive law in the end, whih requires the unknown be on one side only. Bytipping the hat to the right, q̂ ! q ,̂ or to the left, q̂ !^q, so we an write, qB = B0q ,̂ and, Aq =^qA0, instead, weould indiate the distintion between the two pivot states. In the matrix representation of this two-hand quaternionalgebra, the right tipped hat, q ,̂ would be a olumn vetor, while the left tipped hat,^q, a row vetor. However, thisextra distintion is usually unneessary, and the top hat format, q̂, is adequate. We also won't show more solutionmethods working from the right side of the unknown, sine the proess is pratially the same as that when workingfrom the left side, and the intermediate expressions an always be inferred by a simple hand transformation, asillustrated in (49). So, for the rest of this paper we work from the left side and use only the law, qB = B0q̂.With hat tipping, we ould symbolize this equivalene of left and right side methods by,h�1C^ =̂ ^C(h�)�1 = ^C(h�1)0 (50)where the speial equal sign, =̂ , is taken to mean \ transpose and equate ": i.e. ( h�1C^)T = ^C(h�1)0.



6In the speial ase, where, A2 = 1; B1 = 1, and, A1 = X;B2 = Y , we have, h�1 = (X + Y 0)�1, and we obtain,h�1 = (jXj2 + jY j2)(X� + Y 0�) +X�(Y �Y �)0 + jXj2(Y )0 + jY j2X +X�X�Y 0�(jXj2 � jY j2)2 + ( jXj2 + jY j2 )(X +X�)(Y + Y �) + jY j2(X +X�)2 + jXj2(Y + Y �)2 (51)) h�1Ĉ = (jXj2 + jY j2)(X�C + CY �) +X�CY �Y � + jXj2CY + jY j2XC +X�X�CY �(jXj2 � jY j2)2 + ( jXj2 + jY j2 )(X +X�)(Y + Y �) + jY j2(X +X�)2 + jXj2(Y + Y �)2 (52)This speial ase solution was previously given in eqns (72) and (73) of our Quatro-Quaternion paper[2�℄ [PJ3℄, wherewe obtained it by modifying yet another previous result for the general hexpe number inverse found in our earlierHexpentaquaternion paper[1�℄ [PJ2℄, and in the earlier paper we used a rather lengthy method of matrix algebra toobtain the inverse. So, it's useful to ompare the results, espeially sine the formulas take slightly di�erent forms.We reprodue the previous two eqns below, as (QQ-72) and (QQ-73), for onveniene. The inhomogeneous parameter,C, above, is equivalent to that paper's, Z, parameter below. The pivot an be written, Ĉ � C � 1̂, in two-hand algebra,but the dot � appearing here has no speial signi�ane, it just referenes the same usual multipliation operation.Given, X;Y;Z 2 H R ; h = X + Y 0 2Xn; SX = X0; SY = Y0; V X = X �X0; V Y = Y � Y0; et..h�1 � Z � 1̂ = (QQ-72)( (X0 + Y0)2(X�Z + ZY �) + jX �X0j2(X�Z + ZY ) + jY � Y0j2(XZ + ZY �) + 2(X0 + Y0)(X �X0)Z(Y � Y0) )((X0 + Y0)2 + jX �X0j2 + jY � Y0j2)2 � 4jX �X0j2jY � Y0j2= ( (S(X + Y ))2(X�Z + ZY �) + jV Xj2(X�Z + ZY ) + jV Y j2(XZ + ZY �) + 2(S(X + Y ))(V X)Z(V Y ) )((S(X + Y ))2 + jV Xj2 + jV Y j2)2 � 4jV Xj2jV Y j2 (QQ-73)By writing, X = X0 + (X � X0) and Y = Y0 + (Y � Y0), and using these to replae parameters in (52), we aneasily demonstrate the equivalene to the result in (QQ-72); reall, X� = X0 � (X � X0), (X � X0)2 = �jX � X0j2,et. . . thus, we may permute square forms, like C(Y � Y0)2 = (Y � Y0)2C, and so move them about anywhere inprodut expressions, sine the square of a pure quaternion is just a salar. It is probably a lot easier to start with(52) and manipulate this formula to derive (QQ-72), rather than the other way around. This formula is repeatedagain in (QQ-73) using a mix of old and new notation. We borrow two of Hamilton's original symbols, SX andVX, to replae the somewhat more umbersome forms, X0 and X � X0, of the modern notation. But, we preferto keep the modern onjugate, X�, and norm, jXj2, when writing these expressions[6℄. The old salar and vetorforms do stand out more on the page, rendering the formulas slightly more memorable, however. So, we use themon oasion. Stiking stritly to Hamilton's original notation, where S; V;K;N; T; U , are used for the salar, ve-tor, onjugate, norm, tensor, and versor parts of a quaternion, the solution in eqn (QQ-73) above would now be written,= ( (S(X + Y ))2((KX)Z + ZKY ) + (NV X)((KX)Z + ZY ) + (NV Y )(XZ + ZKY ) + 2(S(X + Y ))(V X)Z(V Y ) )((S(X + Y ))2 + (NV X) + (NV Y ))2 � 4(NV X)(NV Y ) (QQ-73')One an beome omfortable with any system of symbols, and with frequent use these all ome to seem natural.However, this format uses many more letters and takes up signi�antly more spae on the page. Letters are alsobest reserved for variables, whenever possible, sine it just makes reading a little easier. So, although this formmay have some advantages today when developing omputer algorithms for symboli manipulation of quaternions,we won't generally make use of this older format in writing papers to present the subjet. There are also severalways to arrange the terms in these formulas, that give di�erent looking expressions, it being not readily apparentthat they are the same. The best forms are really dependent on the nature of the appliation problem being studiedwith these formulas. However, it helps to be able to see, at a glane, that the denominator evaluates to a salar, sowe tend to favor expressing things wherever possible so that eah term looks like a salar there, and one does nothave to mentally ompute an expression to verify it results in just a real number. But, the best numerator format isappliation dependent; seeing vetors helps with physial appliations, while whole quaternions is better for algebra.
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7For example, our solution in (40)-(41), whih has six quaternion terms in the numerator sum, an be further reduedto four terms, by ombining appropriate quaternion expressions into salars. In our previous formulas, the \norm",e.g. jAj2, was the only salar allowed in the numerator. But, if we relax this requirement, and also allow salarsformed with ombinations of di�erent quaternions, e.g. A�iAj +A�jAi 2 R, et.., then, we an write,
(A1B01 +A2B02)�1 = 0BBBBBBBBBB�

(jA1j2jB1j2 � jB2j2jA2j2)(A�1B0�1 �A�2B0�2 )+ 2(jA2j2� + jB1j2�)A�1B0�2 + 2(jA1j2� + jB2j2�)A�2B0�1(jA1j2jB1j2 � jA2j2jB2j2)2 +4( jA1j2jB1j2 + jA2j2jB2j2 )�� + 4jB1j2jB2j2�2 + 4jA1j2jA2j2�2
1CCCCCCCCCCA (53)

and the �nal solution for q is,
q = 0BBBBBBBBBB�

(jA1j2jB1j2 � jB2j2jA2j2)(A�1CB�1 �A�2CB�2)+ 2(jA2j2� + jB1j2�)A�1CB�2 + 2(jA1j2� + jB2j2�)A�2CB�1(jA1j2jB1j2 � jA2j2jB2j2)2 +4( jA1j2jB1j2 + jA2j2jB2j2 )�� + 4jB1j2jB2j2�2 + 4jA1j2jA2j2�2
1CCCCCCCCCCA (54)

where, 2� = A�1A2 + (A�1A2)� ; 2� = B�1B2 + (B�1B2)�All these formulas remain invariant under index exhange, i.e. 1 ! 2; 2 ! 1. This is expeted, sine theproblem de�nition is unhanged by re-arrangement of the AqB terms in the linear sum. This fat gives us a quikway to hek results, and identify alulation errors, in what is sometimes a long and tedious manipulation of symbols.The solution, A1qB1 +A2qB2 = C (2)) q = w1� A�1CB�1 + w2� A�1CB�2 + w3� A�2CB�1 + w4� A�2CB�2 where, wk ; � 2 Rhas four terms that are just the various ombinations of the ordered pair (Aj ; Bk), with, j; k = 1; 2.w1 = (jA1j2jB1j2 � jB2j2jA2j2) = �w4w2 = 2(jA2j2� + jB1j2�)w3 = 2(jA1j2� + jB2j2�)� = (jA1j2jB1j2 � jA2j2jB2j2)2 + 4( jA1j2jB1j2 + jA2j2jB2j2 )�� + 4jB1j2jB2j2�2 + 4jA1j2jA2j2�2Although there are originally 2 � 2 � 2 = 23 = 8 terms, in the numerator, with the form A�� A�A��B�� B�B�� , severalterms ombine to give salars, ultimately reduing these to the number of irreduible quaternion terms, whih in thisase is 2 + 2 � 1 + 0 = 4 . In general, when there are n terms A�qB� in the initial linear equation, the solution willhave at most n3 simple terms|i.e. with unit weight fators|of the form A��A�A�� qB�� B�B�� , in the numerator, andthis sum an then be re-expressed in (2n3 � 3n2 + 4n)=3;8 n � 1 , irreduible quaternion terms. The proof of thisis found later in this paper. The number of irreduible quaternion terms with arbitrary salar oeÆients, whih thisinitial numerator an be redued to; for n = 2, is 4; for n = 3, is 13; for n = 4, is 32; and for n = 5, is 65.



8In equation (3) we have, A1qB1 +A2qB2 +A3qB3 = C (3)A1B01q̂ +A2B02q̂ +A3B03q̂ = Ĉ (55)(A1B01 +A2B02 +A3B03)q̂ = Ĉ (56)q̂ = (A1B01 +A2B02 +A3B03)�1Ĉ (57)We proeed similarly to the seond equation and introdue new parameters, h; g; Fk; k = 1; 2; 3; with,h = A1B01 +A2B02 +A3B03 (58)g = A�1F 01 +A�2F 02 +A�3F 03 where, F1; F2; F3 2 HR (59)) gh = (A�1F 01 +A�2F 02 +A�3F 03)(A1B01 +A2B02 +A3B03) (60)= jA1j2F 01B01 + jA2j2F 02B02 + jA3j2F 03B03 (61)+ A�1A2F 01B02 +A�2A1F 02B01+ A�2A3F 02B03 +A�3A2F 03B02+ A�3A1F 03B01 +A�1A3F 01B03Let's pik, F 01; F 02; F 03, and introdue the salars, �1; �2; �3, where,F 01B02 = F 02B01 i.e. F 02 = F 01(B02=B01) 2�3 = A�1A2 +A�2A1F 02B03 = F 03B02 F 03 = F 02(B03=B02) = F 01(B02=B01)(B03=B02) 2�1 = A�2A3 +A�3A2F 03B01 6= F 01B03 i.e. F 03 is already �xed by relations above. 2�2 = A�3A1 +A�1A3 (62)Notie that we annot set all three relations on the left side in this table; the �rst two determine the third. Thismeans we annot redue the gh term to a left hand quaternion, the way we did in solving the eqn (2) above.g = A�1F 01 +A�2F 01(B02B0�1 )=jB1j2 +A�3F 01(B02B0�1 )(B03B0�2 )=(jB1j2jB2j2) (63)gh = jA1j2F 01B01 + jA2j2F 01(B02B0�1 )B02=jB1j2 + jA3j2F 01(B02B0�1 )(B03B0�2 )B03=(jB1j2jB2j2) (64)+ 2�3F 01B02+ 2�1F 01(B02B0�1 )B03=jB1j2+ A�3A1F 01(B02B0�1 )(B03B0�2 )B01=(jB1j2jB2j2) + (2�2 �A�3A1)F 01B03We an, however, redue the gh term signi�antly, so that it onsists of essentially the sum of two terms, one lefthand quaternion plus one produt of right and left handed fators. Let's introdue, G1; G2, so that,gh = G01 +A�3A1G02 (65)G01 = jA1j2F 01B01 + jA2j2F 01(B02B0�1 )B02=jB1j2 + jA3j2F 01(B02B0�1 )(B03B0�2 )B03=(jB1j2jB2j2) (66)+ 2�3F 01B02 + 2�1F 01(B02B0�1 )B03=jB1j2 + 2�2F 01B03G02 = F 01(B02B0�1 )(B03B0�2 )B01=(jB1j2jB2j2)� F 01B03 (67)then, G01 2 H L , and, G02 2 H L . So, even though we an't write, (gh)�1 = (gh)�=jghj2, here, beause gh 2 Xn, wealready have the inverse formula for this partiular hexpe number in the previous solution given in eqn (40). Thus,omparing terms, we an immediately write down the required inverse, (gh)�1 = (G01 +A�3A1G02)�1, we get,
(G01 +A�3A1G02)�1 = 0BBBBBBBBBB�

(jG1j2 + jA�3A1j2jG2j2)(G0�1 + (A�3A1)�G0�2 ) + jA�3A1j2(G�2G1G�2)0+(A�3A1)�(G�1G2G�1)0 + jG2j2(A�3A1)�(A�3A1)�G0�1 + jG1j2(A�3A1)G0�2(jG1j2 � jA�3A1j2jG2j2)2 +4( jG1j2 + jA�3A1j2jG2j2 )�� + 4jG1j2jG2j2�2 + 4jA�3A1j2�2
1CCCCCCCCCCA (68)

where, 2� = A�3A1 + (A�3A1)� ; 2� = G�1G2 + (G�1G2)�from whih the inverse, h�1 = (gh)�1g, follows.



9Again, we pik F 01 = +jB1j, to help simplify these expressions. Then,g = A�1jB1j+A�2(B02B0�1 )=jB1j+A�3(B02B0�1 )(B03B0�2 )=(jB1jjB2j2) (69)G01 = jA1j2jB1jB01 + jA2j2(B02B0�1 )B02=jB1j+ jA3j2(B02B0�1 )(B03B0�2 )B03=(jB1jjB2j2) (70)+ 2�3jB1jB02 + 2�1(B02B0�1 )B03=jB1j+ 2�2jB1jB03G02 = (B02B0�1 )(B03B0�2 )B01=(jB1jjB2j2)� jB1jB03 (71)) jG1j2 = G�1G1 = G1G�1= jA1j4jB1j4 + jA2j4jB2j4 + jA3j4jB3j4� 2jA1j2jA2j2jB1j2jB2j2 � 2jA2j2jA3j2jB2j2jB3j2+ jA3j2jA1j2(8�1�2�3 � 4�21 jB1j2 � 4�23 jB3j2 + 2jB1j2jB2j2jB3j2)=jB2j2 (72)+ 4�21 jA2j2jA3j2 + 4�23 jA1j2jA2j2+ 4�21jB2j2jB3j2 + 4�22jB1j2jB3j2 + 4�23jB1j2jB2j2+ 4jA1j2jB1j2(��1�1 + �2�2 + �3�3)+ 4jA2j2jB2j2(+�1�1 � �2�2 + �3�3)+ 4jA3j2jB3j2(+�1�1 + �2�2 � �3�3)+ 8�2�3�1jA1j2 + 8�1�3�2jA2j2 + 8�1�2�3jA3j2+ 8�2�3�1jB1j2 + 8�3�1�2jB2j2 + 8�1�2�3jB3j2jG2j2 = G�2G2 = (8�1�2�3 � 4�21 jB1j2 � 4�22 jB2j2 � 4�23 jB3j2 + 4jB1j2jB2j2jB3j2)=jB2j2 (73)G�1G2 + (G�1G2)� = �2�2(8�1�2�3 � 4�21 jB1j2 � 4�22 jB2j2 � 4�23 jB3j2 + 4jB1j2jB2j2jB3j2)=jB2j2 = �2�jG2j2 (74)where, 2�3 = A�1A2 +A�2A1 2�3 = B�1B2 +B�2B1 = B1B�2 +B2B�12�1 = A�2A3 +A�3A2 2�1 = B�2B3 +B�3B2 = B2B�3 +B3B�22�2 = A�3A1 +A�1A3 = 2� 2�2 = B�3B1 +B�1B3 = B3B�1 +B1B�3 (75)Computing G1G�1 manually is somewhat faster than omputing G�1G1. Our hoie of index assignments onf �k; �k g follows the familiar ross produt index yling, so that they are easy to remember. However, when we ex-tend this linear problem to arbitrary n in (4) the ross produt index pattern is no longer useful; and, we will requirenew notation. When quaternion terms are paired up into salar results, it is helpful to remember the ases wherethe salar is invariant under yli permutations, i.e. S(P �Q � � �RS�T �U) = S(UP �Q � � �RS�T �) = S(T �UP �Q � � �RS�),et..also, the salar is invariant under onjugation, i.e. S(P �Q � � �RS�T �U) = S(U�TSR� � � �Q�P ), et. . . and againinvariant under hand transformation, i.e. S(P �Q � � �RS�T �U) = S(U 0T 0�S0�R0 � � �Q0P 0�), et. . . , onjugation andhand transformation reversing the order of all the fators in the whole produt expression. Substituting the (74)result for 2� in (68) simpli�es the denominator, and, rearranging the numerator also, we an now re-write this formula;
(G01 +A�3A1G02)�1 = 0B� (jG1j2 + 2�(A�3A1)�jG2j2)G0�1 + (2�jG1j2 + jA�3A1j2(A�3A1)�jG2j2)G0�2+jA�3A1j2(G�2G1G�2)0 + (A�3A1)�(G�1G2G�1)0 1CA(jG1j2 � jA�3A1j2jG2j2)2 (76)where, 2� = A�3A1 + (A�3A1)� ; HL in boldNote that if B1B�3 ommutes with the produt B2B�1 , then jG2j2 vanishes[7℄, et.., and, G2 � 0, in whih ase, theinverse formula beomes the usual, G0�11 = G0�1 =jG1j2, of one hand quaternions. Otherwise, when suh pairs do not so



10ommute, we have to use the formula (76) for the inverse. We an further redue this formula, by using (74) again;G�1G2 +G�2G1 = �2�jG2j2=) G�2G1 = �2�jG2j2 �G�1G2 ) G�2G1G�2 = �2�jG2j2G�2 � jG2j2G�1 (77)=) G�1G2 = �2�jG2j2 �G�2G1 ) G�1G2G�1 = �2�jG2j2G�1 � jG1j2G�2Putting these results for the three fator produts, G��G�G�� , into formula (76), and simplifying, we get,(G01 +A�3A1G02)�1 = G0�1 +A�3A1G0�2jG1j2 � jA�3A1j2jG2j2 (78)In a previous paper[2�℄ [PJ3℄ we introdued the onept of right onjugate and left onjugate, h�R and h�L, whih attakthe right hand quaternion omponent and left hand quaternion omponent of a two-hand quaternion, h, separately.Note, the normal onjugate, h�, ats on both right and left hand omponents simultaneously. Using this notation,(G01 +A�3A1G02)�L(G01 +A�3A1G02) = (G0�1 +A�3A1G0�2 )(G01 +A�3A1G02) (79)= G0�1 G01 +A�3A1G0�1 G02 +A�3A1G0�2 G01 + (A�3A1)2G0�2 G02 (80)= jG1j2 +A�3A1(G2G�1 +G1G�2) + (A�3A1)2jG2j2 (81)= jG1j2 +A�3A1(�2�jG2j2) + (A�3A1)2jG2j2 = jG1j2 � (2�� (A�3A1))(A�3A1)jG2j2 (82)= jG1j2 � (A�3A1)�(A�3A1)jG2j2 = jG1j2 � jA�3A1j2jG2j2 (83)and we an write this inverse,(G01 +A�3A1G02)�1 = (G01 +A�3A1G02)�LjG1j2 � jA�3A1j2jG2j2 = (G01 +A�1A3G02)�jG1j2 � jA�3A1j2jG2j2 (84)This onstrution relies on the fat that, G�1G2 + G�2G1 = �2�jG2j2, found above. If G1 = 0, then, �2�jG2j2 = 0,so either, 2� = 0 or jG2j2 = 0. If 2� = 0, then A�3A1 is a pure quaternion, i.e. a vetor in Hamilton's alulus,A�3A1 =V (A�3A1), and its square is negative, (A�3A1)2 = �jA�3A1j2, and its onjugate is obtained from a sign ip,(A�3A1)� = �(A�3A1); the inverse formula redues to, (A�3A1G02)�1 = [(A�3A1)�=jA�3A1j2℄[G0�2 =jG2j2℄, whih we anwrite, = (A�3A1)�1G0�12 , whih is what we'd expet. If both G1 = 0 and G2 = 0, then the denominator vanishes, butthe l-h-s is zero also, i.e. there's nothing to invert. If G1 6= 0, and either G2 = 0 or A�3A1 = 0, then we just get theone hand inverse, G0�11 = G0�1 =jG1j2. Finally, if all three fators, G01; G02; A�3A1, are non-zero, but, jG1j = jA�3A1G2j,then the denominator vanishes, and there's no inverse for this two-hand quaternion. Apart from these speialsituations, the inverse exists, is a general two-hand quaternion, and given by the formulas (78) and (84).In the �nal step, we need to onstrut, h�1 = (G01 + A�3A1G02)�1g = (gh)�Lg=�, using the de�nitions (69)-(73),where, the salar, � = (gh)�L(gh), is the denominator in (84). Substituting and rearranging yields 33 = 27 terms forthe numerator, with the form A�� A�A�� B0�� B0� B0�� , whih we an write[8℄,(gh)�Lg = A�1 A1A�1 B0�1 B01B0�1 + A�2 A1A�1 B0�1 B02B0�1 + A�3 A1A�1 B0�1 B03B0�1+ A�1 A1A�2 B0�1 B01B0�2 + A�2 A1A�2 B0�2 B02B0�1 + A�3 A1A�2 B0�1 B02B0�3+ A�1 A1A�3 B0�1 B01B0�3 + A�2 A1A�3 B0�1 B03B0�2 + A�3 A1A�3 B0�1 B03B0�3+ A�1 A2A�1 B0�1 B01B0�2 + A�2 A2A�1 B0�2 B02B0�1 + A�3 A2A�1 B0�3 B01B0�2+ A�1 A2A�2 B0�2 B01B0�2 + A�2 A2A�2 B0�2 B02B0�2 + A�3 A2A�2 B0�2 B03B0�2 (85)+ A�1 A2A�3 B0�1 B03B0�2 + A�2 A2A�3 B0�2 B02B0�3 + A�3 A2A�3 B0�3 B03B0�2+ A�1 A3A�1 B0�1 B01B0�3 + A�2 A3A�1 B0�3 B01B0�2 + A�3 A3A�1 B0�3 B03B0�1+ A�1 A3A�2 B0�3 B02B0�1 + A�2 A3A�2 B0�3 B02B0�2 + A�3 A3A�2 B0�3 B03B0�2+ A�1 A3A�3 B0�3 B01B0�3 + A�2 A3A�3 B0�3 B02B0�3 + A�3 A3A�3 B0�3 B03B0�3One again, the solution for q has the form, q = PA�: A:A�: CB�: B:B�:� (86)with, � = (gh)�L(gh), this time, instead of the previous salar, jghj2 = (gh)�(gh), in the denominator (31); but, sinethat previous gh 2 H L , we ould also have written that salar there using the left onjugate, jghj2 = (gh)�L(gh).

http://www.hypercomplex.com/research/emgrav/hypcx-20060129a.pdf


11In working out these formulas, we have to simplify many multi-fator B-produts, requiring us to use variousexpression blok redution tehniques, e.g.,B1B�2B1B�3B2B�3 + (B1B�2B1B�3B2B�3 )�+ B�2B1B�3B2B�1B3 + (B�2B1B�3B2B�1B3)�= B1B�2B1B�3B2B�3 + (B1B�2B1B�3B2B�3 )�+ B�3B1B�2B3B�1B2 + (B�3B1B�2B3B�1B2)�  swap onjugate �= B1B�2B1B�3B2B�3 + (B1B�2B1B�3B2B�3 )�+ B1B�2B3B�1B2B�3 + (B1B�2B3B�1B2B�3 )�  rotate B's= B1B�22�2B2B�3 + (B1B�22�2B2B�3)�  add entral pair= 2�2jB2j2(B1B�3 + (B1B�3)�)= (2�2)2jB2j2then we have,� = jG1j2 � jA�3A1j2jG2j2 (87)+ jA1j4jB1j4 + jA2j4jB2j4 + jA3j4jB3j4 � 2jA1j2jA2j2jB1j2jB2j2 � 2jA2j2jA3j2jB2j2jB3j2 � 2jA3j2jA1j2jB3j2jB1j2+ 4�21 jA2j2jA3j2 + 4�22 jA3j2jA1j2 + 4�23 jA1j2jA2j2 + 4�21jB2j2jB3j2 + 4�22jB3j2jB1j2 + 4�23jB1j2jB2j2+ 4jA1j2jB1j2(��1�1 + �2�2 + �3�3) + 4jA2j2jB2j2(+�1�1 � �2�2 + �3�3) + 4jA3j2jB3j2(+�1�1 + �2�2 � �3�3)+ 8�1�2�3jA1j2 + 8�2�3�1jA2j2 + 8�3�1�2jA3j2 + 8�2�3�1jB1j2 + 8�3�1�2jB2j2 + 8�1�2�3jB3j2where, �k; �k; are de�ned in (75).Next, the 27 terms in the numerator are redued to 15, the last 6 terms being kept in the A�� A�A�� B0�� B0� B0�� form.(gh)�Lg = ( +jA1j2jB1j2 � jA2j2jB2j2 � jA3j2jB3j2 )A�1B0�1+ ( �jA1j2jB1j2 + jA2j2jB2j2 � jA3j2jB3j2 )A�2B0�2+ ( �jA1j2jB1j2 � jA2j2jB2j2 + jA3j2jB3j2 )A�3B0�3+ (jB1j22�3 + jA2j22�3)A�1B0�2 + (jB2j22�3 + jA1j22�3)A�2B0�1+ (jB2j22�1 + jA3j22�1)A�2B0�3 + (jB3j22�1 + jA2j22�1)A�3B0�2+ (jB3j22�2 + jA1j22�2)A�3B0�1 + (jB1j22�2 + jA3j22�2)A�1B0�3 (88)+ A�1 A2 A�3 B0�1 B03B0�2+ A�1 A3 A�2 B0�3 B02B0�1+ A�2 A1 A�3 B0�1 B03B0�2+ A�2 A3 A�1 B0�3 B01B0�2+ A�3 A1 A�2 B0�1 B02B0�3+ A�3 A2 A�1 B0�3 B01B0�2These last six an also be written as 4, further reduing the number of numerator terms to 13,A�3 A1A�2 B0�1 B02B0�3 + 2�3A�3 B0�1 B03B0�2 + 2�1A�1 B0�3 B01B0�2 +A�1 A3 A�2 B0�3 B02B0�1 (88a)These formulas, (87) and (88), are invariant under index exhange. Most of the expressions are obviously unhangedwhen we swap any pair of indiies, but the last six terms in (88) require some alulation to demonstrate this fat.Eah of the three bloks of expressions|separated by blank lines|in eqn (88), is independently invariant under indexexhange. For example, to swap the 1� 2 indiies, we make exhanges: A1 ! A2; A2 ! A1 and B1 ! B2; B2 ! B1,whih auses the salar exhanges, �1 ! �2; �2 ! �1; �3 ! �3 and �1 ! �2; �2 ! �1; �3 ! �3, whene a simpleinspetion veri�es that the �rst two expression bloks are unhanged after this swap.



12With the last blok, the easiest way to demonstrate invariane is to swap indiies and subtrat the original blok,and then show that the di�erene an be redued to zero. Let's do this with the equivalent four term expression.Swap Indiies: 1-2(A�3 A2 A�1 B0�2 B01B0�3 + 2�3A�3 B0�2 B03B0�1 + 2�2A�2 B0�3 B02B0�1 +A�2 A3A�1 B0�3 B01B0�2 )�(A�3 A1 A�2 B0�1 B02B0�3 + 2�3A�3 B0�1 B03B0�2 + 2�1A�1 B0�3 B01B0�2 +A�1 A3A�2 B0�3 B02B0�1 )=) A�2 A3 A�1 B0�3 B01 B0�2 = (2�1 � A�3 A2)A�1 B0�3 B01 B0�2 = 2�1 A�1 B0�3 B01 B0�2 �A�3 A2 A�1 B0�3 B01 B0�2=) A�1 A3 A�2 B0�3 B02 B0�1 = (2�2 � A�3 A1)A�2 B0�3 B02 B0�1 = 2�2 A�2 B0�3 B02 B0�1 �A�3 A1 A�2 B0�3 B02 B0�1=(A�3 A2 A�1 B0�2 B01B0�3 + 2�3A�3 B0�2 B03B0�1 + 0 � A�3 A2A�1 B0�3 B01B0�2 )�(A�3 A1 A�2 B0�1 B02B0�3 + 2�3A�3 B0�1 B03B0�2 + 0 � A�3 A1A�2 B0�3 B02B0�1 )=(A�3 A2 A�1 (B0�2 B01B0�3 �B0�3 B01B0�2 ) + 2�3A�3 B0�2 B03B0�1 )�(A�3 A1 A�2 (B0�1 B02B0�3 �B0�3 B02B0�1 ) + 2�3A�3 B0�1 B03B0�2 )=) B0�2 B01 B0�3 � B0�3 B01 B0�2 = B0�2 (2�2 �B03 B0�1 )� (2�2 �B0�1 B03)B0�2 = B0�1 B03 B0�2 � B0�2 B03 B0�1=) B0�1 B02 B0�3 � B0�3 B02 B0�1 = B0�1 (2�1 �B03 B0�2 )� (2�1 �B0�2 B03)B0�1 = B0�2 B03 B0�1 � B0�1 B03 B0�2=(A�3 A2 A�1 B0�1 B03B0�2 �A�3 A2A�1 B0�2 B03 B0�1 + 2�3A�3 B0�2 B03B0�1 )�(A�3 A1 A�2 B0�2 B03B0�1 �A�3 A1A�2 B0�1 B03 B0�2 + 2�3A�3 B0�1 B03B0�2 )=) A�3 A2 A�1 B0�1 B03 B0�2 +A�3 A1 A�2 B0�1 B03 B0�2 = (A�3 A2 A�1 + A�3 A1 A�2)B0�1 B03 B0�2 = A�3 2�3 B0�1 B03 B0�2=) A�3 A2 A�1 B0�2 B03 B0�1 +A�3 A1 A�2 B0�2 B03 B0�1 = (A�3 A2 A�1 + A�3 A1 A�2)B0�2 B03 B0�1 = A�3 2�3 B0�2 B03 B0�1=(A�3 2�3B0�1 B03B0�2 + 2�3A�3 B0�2 B03B0�1 )�(A�3 2�3B0�2 B03B0�1 + 2�3A�3 B0�1 B03B0�2 )= 0 Q.E.D.Similarly, the blok an be shown to remain unhanged under 1-3 and 2-3 index swaps. We an express this blokin yet another way, where the the number of six fator quaternion terms, A�� A�A�� B0�� B0� B0�� , beomes just one,but we need to introdue more terms of lower order to aomplish this; an example is shown below:+ 2A�1A2 A�3 B0�1 B02B0�3+ (�2�1A�1 + 2�2A�2 � 2�3A�3)B0�1 B02B0�3 +A�1 A2 A�3 (�2�1B0�1 + 2�2B0�2 � 2�3B0�3 ) (88b)+ 2�3 2�1A�3 B0�1 + 2�1 2�3A�1 B0�3The last 2 of these 9 terms an be absorbed into the middle expression blok of eqn (88), but that still leaves 7terms, ompared to the 6 A�� A�A�� B0�� B0� B0�� , orignal terms, so we don't get a redution of term ount. We do geta redution in the \order" of eah of �ve terms, and sometimes this an be useful. However, we have hosen to keepthese six original bi-ubi quaternion terms in their initial form.Hene, both the numerator and denominator in h�1 = (gh)�Lg=� , are separately invariant under the exhange ofany two original indiies: 1-2, 2-3, or 3-1. This is expeted beause the A�qB� terms in eqn (3) an be arranged inany order owing to the assoiativity of the addition operator in quaternion algebra. We are now ready to write downthe solution to the \three term" linear problem.



13Hene, for the \ three term " linear problem,A1qB1 +A2qB2 +A3qB3 = C (3)the two-hand inverse fator, h�1, is,
(A1B01 +A2B02 +A3B03)�1 =

0BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB�

( +jA1j2jB1j2 � jA2j2jB2j2 � jA3j2jB3j2 )A�1B0�1 +( �jA1j2jB1j2 + jA2j2jB2j2 � jA3j2jB3j2 )A�2B0�2 +( �jA1j2jB1j2 � jA2j2jB2j2 + jA3j2jB3j2 )A�3B0�3+(jB1j22�3 + jA2j22�3)A�1B0�2 + (jB2j22�3 + jA1j22�3)A�2B0�1+(jB2j22�1 + jA3j22�1)A�2B0�3 + (jB3j22�1 + jA2j22�1)A�3B0�2+(jB3j22�2 + jA1j22�2)A�3B0�1 + (jB1j22�2 + jA3j22�2)A�1B0�3+A�1 A2 A�3 B0�1 B03 B0�2 +A�1 A3 A�2 B0�3 B02 B0�1 + A�2 A1 A�3 B0�1 B03 B0�2+A�2 A3 A�1 B0�3 B01 B0�2 +A�3 A1 A�2 B0�1 B02 B0�3 + A�3 A2 A�1 B0�3 B01 B0�2jA1j4jB1j4 + jA2j4jB2j4 + jA3j4jB3j4�2jA1j2jA2j2jB1j2jB2j2 � 2jA2j2jA3j2jB2j2jB3j2 � 2jA3j2jA1j2jB3j2jB1j2+4�21 jA2j2jA3j2 + 4�22 jA3j2jA1j2 + 4�23 jA1j2jA2j2+4�21jB2j2jB3j2 + 4�22jB3j2jB1j2 + 4�23jB1j2jB2j2+4jA1j2jB1j2(��1�1 + �2�2 + �3�3)+4jA2j2jB2j2( �1�1 � �2�2 + �3�3)+4jA3j2jB3j2( �1�1 + �2�2 � �3�3)+8�2�3�1jA1j2 + 8�3�1�2jA2j2 + 8�1�2�3jA3j2+8�2�3�1jB1j2 + 8�3�1�2jB2j2 + 8�1�2�3jB3j2

1CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCA
(89)

and the solution is,
q =

0BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB�

( +jA1j2jB1j2 � jA2j2jB2j2 � jA3j2jB3j2 )A�1CB�1 +( �jA1j2jB1j2 + jA2j2jB2j2 � jA3j2jB3j2 )A�2CB�2 +( �jA1j2jB1j2 � jA2j2jB2j2 + jA3j2jB3j2 )A�3CB�3+(jB1j22�3 + jA2j22�3)A�1CB�2 + (jB2j22�3 + jA1j22�3)A�2CB�1+(jB2j22�1 + jA3j22�1)A�2CB�3 + (jB3j22�1 + jA2j22�1)A�3CB�2+(jB3j22�2 + jA1j22�2)A�3CB�1 + (jB1j22�2 + jA3j22�2)A�1CB�3+A�1 A2 A�3 C B�2 B3 B�1 +A�1 A3 A�2 C B�1 B2 B�3 +A�2 A1 A�3 C B�2 B3 B�1+A�2 A3 A�1 C B�2 B1 B�3 +A�3 A1 A�2 C B�3 B2 B�1 +A�3 A2 A�1 C B�2 B1 B�3jA1j4jB1j4 + jA2j4jB2j4 + jA3j4jB3j4�2jA1j2jA2j2jB1j2jB2j2 � 2jA2j2jA3j2jB2j2jB3j2 � 2jA3j2jA1j2jB3j2jB1j2+4�21 jA2j2jA3j2 + 4�22 jA3j2jA1j2 + 4�23 jA1j2jA2j2+4�21jB2j2jB3j2 + 4�22jB3j2jB1j2 + 4�23jB1j2jB2j2+4jA1j2jB1j2(��1�1 + �2�2 + �3�3)+4jA2j2jB2j2( �1�1 � �2�2 + �3�3)+4jA3j2jB3j2( �1�1 + �2�2 � �3�3)+8�2�3�1jA1j2 + 8�3�1�2jA2j2 + 8�1�2�3jA3j2+8�2�3�1jB1j2 + 8�3�1�2jB2j2 + 8�1�2�3jB3j2+8�3�1�2jB1j2 + 8�1�2�3jB2j2 + 8�2�3�1jB3j2

1CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCA
(90)

where, 2�1 = A�2A3 + A�3A2 2�2 = A�3A1 + A�1A3 2�3 = A�1A2 + A�2A12�1 = B�2B3 +B�3B2 2�2 = B�3B1 + B�1B3 2�3 = B�1B2 + B�2B1Ak; Bk; C; q 2 HR ; B0k 2 H L ; �k; �k;2 R; k = 1; 2; 3:



14Consider equation (4) with n = 4,A1qB1 +A2qB2 + � � �+AnqBn = C (4)A1B01q̂ +A2B02q̂ +A3B03q̂ +A4B04q̂ = Ĉ(A1B01 +A2B02 +A3B03 +A4B04)q̂ = Ĉq̂ = (A1B01 +A2B02 +A3B03 +A4B04)�1ĈProeeding as usual, with new parameters, h; g; Fk; k = 1; 2; 3; 4; we have,h = A1B01 +A2B02 +A3B03 +A4B04 (91)g = A�1F 01 +A�2F 02 +A�3F 03 +A�4F 04 (92)) gh = jA1j2F 01B01 + jA2j2F 02B02 + jA3j2F 03B03 + jA4j2F 04B04 (93)+ A�1A2F 01B02 +A�2A1F 02B01+ A�1A3F 01B03 +A�3A1F 03B01+ A�1A4F 01B04 +A�4A1F 04B01+ A�2A3F 02B03 +A�3A2F 03B02+ A�2A4F 02B04 +A�4A2F 04B02+ A�3A4F 03B04 +A�4A3F 04B03Let's pik, F 01; F 02; F 03; F 04, and introdue the salars, �jk = A�jAk +A�kAj , where,F 01B02 = F 02B01 i.e. F 02 = F 01(B02=B01) 2�12 = A�1A2 +A�2A1F 01B03 = F 03B01 F 03 = F 01(B03=B01) 2�13 = A�1A3 +A�3A1F 01B04 = F 04B01 F 04 = F 01(B04=B01) 2�14 = A�1A4 +A�4A1F 02B03 6= F 03B02 i.e. F 03 is already �xed by relations above. 2�23 = A�2A3 +A�3A2F 02B04 6= F 04B02 i.e. F 04 is already �xed by relations above. 2�24 = A�2A4 +A�4A2F 03B04 6= F 04B03 i.e. F 04 is already �xed by relations above. 2�34 = A�3A4 +A�4A3 (94)We now hange our notation for the usual salars from single index, �j , to double index, �jk , beause the rossprodut index yling permutations are no longer useful here. Things are very di�erent this time around. We onlyhave four free parameters, Fk, to set, but six relations that require them, to redue the gh expression. The best wean do is to set, G1; G2; G3; G4, so that,gh = G01 +A�2A3G02 +A�2A4G03 +A�3A4G04 (95)G01 = +jA1j2F 01B01 + jA2j2F 01(B02=B01)B02 + jA3j2F 01(B03=B01)B03 + jA4j2F 01(B04=B01)B04 (96)+ 2�12F 01B02+ 2�13F 01B03+ 2�14F 01B04+ 2�23F 01(B03=B01)B02 + 2�24F 01(B04=B01)B02 + 2�34F 01(B04=B01)B03G02 = F 01((B02=B01)B03 � (B03=B01)B02) (97)G03 = F 01((B02=B01)B04 � (B04=B01)B02) (98)G04 = F 01((B03=B01)B04 � (B04=B01)B03) (99)where, G01; G02; G03; G04 2 H L . So, by introduing the four term g, we haven't ahieved any redution of the original hfator at all. We are right bak to a four term problem (95), whih is where we started out in (91). We ould just aswell simply multiply eqn (91) by A�11 and we'd obtain preisely the form of gh, with muh less work. Now, there'snothing that says the g in (92) has to have four terms. It ould have more. Also, the form of eah term ould bemodi�ed to be more e�etive in reduing the gh expression. We ould also try di�erent g0s, say, g1 and g2, and addthem to arrive at the required redued expression, and so on. But, guessing is tedious, and we need a more struturedapproah. Beyond n > 3, therefore, our urrent method of approah is too ompliated, even though it appearedsimple at the �rst. We'll introdue a simpler and more diret method of obtaining the inverse h�1 in the setionsbelow, where all these suggestive ideas beome inorporated into the general method that solves the linear problem



15for all n. These �rst few solutions then form a useful hek and guide to the development of the next method.In our above examples, the strategy was to multiply the original bilinear form, h = (A1B01 +A2B02 + � � �+AnB0n),by fators ontaining onjugates of the right hand quaternions, g = (A�1F 01 + A�2F 02 + � � � + A�nF 0n), so that we ouldredue the right hand quaternion omponents to salars, using the two rules, A�sAs = jAsj2 2 R, when the indiiesare the same, and, A�sAr+A�rAs 2 R, when the indiies di�er. When we're ompletely suessful, the produt gh is aleft handed quaternion, and we an immediately invert the linear equation, using the familiar one-handed quaternionalgebra. If we're only partially suessful, then we do not quite get a left handed quaternion, there's some righthanded omponents remaining, but we an still solve the problem, beause we an use the solution of the previousn-1 term problem to solve the n term one. This is the general idea. But, at the 4 term problem, things get tooomplex. There's no redution at all, and we have to start being more imaginative about our hoies of those freeparameter fators. Now, the idea of onstruting fators with onjugates of the right hand quaternions, ould berepresented more eÆiently, notationally, by the equivalent idea of partial onjugation. We ould just as well selet,g = (A1F 01 +A2F 02 + � � �+AnF 0n), and then write, g�R = (A�1F 01 +A�2F 02 + � � �+A�nF 0n). We notied that the solutionto the \ three term" problem ould be e�etively written using the left onjugate, (gh)�Lg, in the numerator, and,� = (gh)�L(gh), in the denominator, as in eqn (86). So, the idea of the partial onjugate is a useful shorthand for theonept of onjugating just the right, or just the left, handed parameters. This notational abbreviation allows us toavoid writing things out expliitly all the time; and beomes the entral onveniene tehnique in the method we'lldevelop next, enabling us to manipulate the formulas muh easier than would otherwise be the ase. But, �rst, weneed some additional notation also, to failitate formula onstrutions in the later setions to follow.double dot h: Let us de�ne �h�1n � �h(A;B)�1n to be the expliit solution to the n-term linear problem, i.e.,�hn = (A1B01 +A2B02 + � � �+AnB0n) (100)�h�1n = (A1B01 +A2B02 + � � �+AnB0n)�1 (101)We put a double dot � above the h to distinguish this subsripted �hn from the omponents of h , sine, for thelatter we've also previously used various subsripted variations like, hj ; j = 1; 2; :::; 16 and h0; hR1; hR2; :::; hZ2; hZ3,and so on. The double dot � then indiates the double handed \ bilinear " form of the hexpe number with nterms. Exept for the appendix, we don't make referene to the omponents of an hexpe number in this paper. But,to avoid onfusion with past papers, and any future works, we need to make this distintion. The double dot isinluded to emphasize the double handed bilinear format, and an appear on any suh variable, �h or �hn, but is onlyneeded on the subsripted varieties to disambiguate the multiple use of subsripts in these ases. The ontext usuallydetermines whether h is in bilinear form or otherwise in basis omponent format. It should be noted that the latterformat is, in fat, just a speial bilinear form with 16 terms, �h16, where the handed quaternions involved are triviallyproportional to the unit quaternions. But, when we use the double dot form, �h16, we're spei�ally emphasizing thatthe quaternions in the 16 terms are not neessarily proportional to the unit quaternions of some basis, although theyould be. Nevertheless, this means that regardless of how many terms exist in a given bilinear expression for h, theyan always be redued to represent h in at most 16 suh terms; �hn 7! �h16 . But, the onvenient format may haveus treating expressions with n > 16 to avoid deomposing the original quaternion parameters into their omponentsjust to e�et a redution in term ount.We now have expliit solutions, �h�11 ; �h�12 , and, �h�13 . Then, �h(A;B)�1n and �h(P;Q)�1n , would represent twodi�erent inverses with the same number of terms n, but di�ering sequene parameters, Ak ; Bk and Pj ; Qj , withj; k = 1; 2; : : : ; n; the �hn � �h(A;B)n representing the orresponding two-hand expression that is, or is to be,inverted. We shall use this symboli notation in the setions below, where we solve systems of linear equations.



16Simpler MethodUsing the right and left onjugate operators, ( � )�R and ( � )�L, we now work out the solution to the linear problemin a more diret manner. This method parallels how we think about the idea of the onjugate in the more usualone-hand algebra of Hamilton's quaternion alulus.let, h � �hn; n � 2 :[1℄ hq̂ = Ĉ [4℄ h�1 = (h�Rh)�Lh�R(h�Rh)�Lh�Rh[2℄ h�Rhq̂ = h�RĈ (102)[3℄ (h�Rh)�Lh�Rhq̂ = (h�Rh)�Lh�RĈ [5℄ q̂ =  (h�Rh)�Lh�R(h�Rh)�Lh�Rh ! Ĉe.g.: A1qB1 +A2qB2 = C (2)h = A1B01 +A2B02h�R = A�1B01 +A�2B02h�Rh = (A�1B01 +A�2B02)(A1B01 +A2B02)= A�1B01A1B01 +A�1B01A2B02 +A�2B02A1B01 +A�2B02A2B02= A�1A1B01B01 +A�1A2B01B02 +A�2A1B02B01 +A�2A2B02B02(h�Rh)�L = A�1A1B0�1 B0�1 +A�1A2B0�2 B0�1 +A�2A1B0�1 B0�2 +A�2A2B0�2 B0�2(h�Rh)�Lh�R = (A�1A1B0�1 B0�1 +A�1A2B0�2 B0�1 +A�2A1B0�1 B0�2 +A�2A2B0�2 B0�2 )(A�1B01 +A�2B02)= A�1A1A�1B0�1 B0�1 B01 +A�1A2A�1B0�2 B0�1 B01 +A�2A1A�1B0�1 B0�2 B01 +A�2A2A�1B0�2 B0�2 B01+A�1A1A�2B0�1 B0�1 B02 +A�1A2A�2B0�2 B0�1 B02 +A�2A1A�2B0�1 B0�2 B02 +A�2A2A�2B0�2 B0�2 B02=) re-arranging onjugate � fator orders...= A�1A1A�1B0�1 B01B0�1 +A�1A2A�1B0�2 B01B0�1 +A�1A1A�2B0�1 B0�2 B01 +A�2A2A�1B0�2 B0�2 B01+A�1A1A�2B0�1 B0�1 B02 +A�2A2A�1B0�2 B0�1 B02 +A�2A1A�2B0�1 B02B0�2 +A�2A2A�2B0�2 B02B0�2=) A�1A1A�2B0�1 B0�2 B01 + A�1A1A�2B0�1 B0�1 B02 = A�1A1A�2B0�1 (B0�2 B01 +B0�1 B02)=) = A�1A1A�2(B0�2 B01 +B0�1 B02)B0�1 = A�1A1A�2B0�2 B01B0�1 + A�1A1A�2B0�1 B02B0�1 et...) = A�1A1A�1B0�1 B01B0�1 +A�1A2A�1B0�2 B01B0�1 +A�1A1A�2B0�2 B01B0�1 +A�2A2A�1B0�2 B01B0�2+A�1A1A�2B0�1 B02B0�1 +A�2A2A�1B0�1 B02B0�2 +A�2A1A�2B0�1 B02B0�2 +A�2A2A�2B0�2 B02B0�2=) so all terms now have format A�AA�B�BB� ompare eqn (30)= jA1j2A�1B0�1 jB1j2 +A�1A2A�1B0�2 jB1j2 + jA1j2A�2B0�2 jB1j2 + jA2j2A�1B0�2 B01B0�2+ jA1j2A�2B0�1 B02B0�1 + jA2j2A�1B0�1 jB2j2 +A�2A1A�2B0�1 jB2j2 + jA2j2A�2B0�2 jB2j2= (jA1j2jB1j2 + jA2j2jB2j2)(A�1B0�1 +A�2B0�2 ) + jA2j2A�1B0�2 B01B0�2+ jA1j2A�2B0�1 B02B0�1 + jB2j2A�2A1A�2B0�1 + jB1j2A�1A2A�1B0�2(h�Rh)�Lh�Rh = (h�Rh)�Lh�R(A1B01 +A2B02)= ((jA1j2jB1j2 + jA2j2jB2j2)(A�1B0�1 +A�2B0�2 ) + jA2j2A�1B0�2 B01B0�2 )(A1B01 +A2B02)+ (jA1j2A�2B0�1 B02B0�1 + jB2j2A�2A1A�2B0�1 + jB1j2A�1A2A�1B0�2 )(A1B01 +A2B02)



17(h�Rh)�Lh�Rh = (jA1j2jB1j2 + jA2j2jB2j2)2+ (jA1j2jB1j2 + jA2j2jB2j2)(A�1A2B0�1 B02 +A�2A1B0�2 B01)+ (jA1j2jB1j2 + jA2j2jB2j2)(A�1A2B0�2 B01 +A�2A1B0�1 B02)+ jA1j2jA2j2(B0�1 B02B0�1 B02 +B0�2 B01B0�2 B01) + jB1j2jB2j2(A�1A2A�1A2 +A�2A1A�2A1)=) B0�1 B02B0�1 B02 +B0�2 B01B0�2 B01 = (B0�1 B02)2 + (B0�2 B01)2 = (B�1B2)2 + (B�2B1)2=) = (B�1B2 + B�2B1)2 � 2B�1B1B�2B2 = (2�)2 � 2jB1j2jB2j2 et...= (jA1j2jB1j2 + jA2j2jB2j2)2 � 4jA1j2jA2j2jB1j2jB2j2+ 4(jA1j2jB1j2 + jA2j2jB2j2)�� + jA1j2jA2j2(2�)2 + jB1j2jB2j2(2�)2
) h�1 = 0BBBBBBBBBB�

(jA1j2jB1j2 + jA2j2jB2j2)(A�1B0�1 +A�2B0�2 ) + jA2j2A�1B0�2 B01B0�2+jA1j2A�2B0�1 B02B0�1 + jB2j2A�2A1A�2B0�1 + jB1j2A�1A2A�1B0�2(jA1j2jB1j2 + jA2j2jB2j2)2 � 4jA1j2jA2j2jB1j2jB2j2+4(jA1j2jB1j2 + jA2j2jB2j2)�� + jA1j2jA2j2(2�)2 + jB1j2jB2j2(2�)2
1CCCCCCCCCCA

q = 0BBBBBBBBBB�
(jA1j2jB1j2 + jA2j2jB2j2)(A�1CB�1 + A�2CB�2 ) + jA2j2A�1CB�2B1B�2+jA1j2A�2CB�1B2B�1 + jB2j2A�2A1A�2CB�1 + jB1j2A�1A2A�1CB�2(jA1j2jB1j2 + jA2j2jB2j2)2 � 4jA1j2jA2j2jB1j2jB2j2+4(jA1j2jB1j2 + jA2j2jB2j2)�� + jA1j2jA2j2(2�)2 + jB1j2jB2j2(2�)2

1CCCCCCCCCCAwhere, 2� = A�1A2 +A�2A1 ; 2� = B�1B2 +B�2B1An alternative parallel method, that begins with the left onjugate, h�L , as �rst fator, and so builds up the numer-ator, (h�Lh)�Rh�L , instead of, (h�Rh)�Lh�R , solves this problem again. The reader may verify the result is the same.The �rst of the linear equations, (1), ould also be trivially solved with this method.e.g: A1qB1 = C (1)h = A1B01h�R = A�1B01h�Rh = (A�1B01)(A1B01)= A�1A1B01B01 = jA1j2(B01)2(h�Rh)�L = jA1j2(B0�1 )2(h�Rh)�Lh�R = jA1j2(B0�1 )2A�1B01 = jA1j2jB1j2A�1B0�1(h�Rh)�Lh�Rh = jA1j2jB1j2A�1B0�1 (A1B01) = jA1j4jB1j4) h�1 = jA1j2jB1j2A�1B0�1jA1j4jB1j4 = A�1B0�1jA1j2jB1j2 and, q = A�1CB�1jA1j2jB1j2



18General SolutionThe two onjugated ubi forms, (h�Rh)�Lh�R and (h�Lh)�Rh�L, whih both independently solve the 1-term and2-term problems, as illustrated above, now need to be ombined together with a third onjugated ube, like h�Rhh�L,in order to obtain the solutions for the 3-term and higher linear problems. The method and solution is disussed inthe appendix: onjugated ubes, where a formula for h�1 is given in (A-35). We had intended to present thatsolution, based on these three ubi forms, in this setion, but have sine disovered a more eÆient formula, whihwe present here instead. The new \Gilgamesh Solution " is also disussed in the appendix and given there in (A-60).let, h � �hn; n � 1 :[1℄ hq̂ = Ĉ [6℄ h�1 = h�(hh�)�R + 2(h�L(h�Rh�L)�R)�Rh�(hh�)�Rh+ 2(h�L(h�Rh�L)�R)�Rh[2℄ (hh�)�Rhq̂ = (hh�)�RĈ[3℄ h�(hh�)�Rhq̂ = h�(hh�)�RĈ [7℄ q̂ =  h�(hh�)�R + 2(h�L(h�Rh�L)�R)�Rh�(hh�)�Rh+ 2(h�L(h�Rh�L)�R)�Rh ! Ĉ[4℄ (h�L(h�Rh�L)�R)�Rhq̂ = (h�L(h�Rh�L)�R)�RĈ (103)[5℄ (h�(hh�)�R + 2(h�L(h�Rh�L)�R)�R)hq̂ = (h�(hh�)�R + 2(h�L(h�Rh�L)�R)�R)ĈWe an no longer just multiply the l-h-s of the linear equation by simple onjugated fators to redue h to salar,when we deal with arbitrary n. We must also ombine these produts to obtain solutions. Two new ubes, h�(hh�)�Rand (h�L(h�Rh�L)�R)�R, are now built up on the l-h-s to produe eqns [3℄ and [4℄ above, respetively, and then theformer is added to twie the latter to obtain the redution to salar in [5℄. The inverse, h�1, and solution for q,follows. The Gilgamesh Solution was found by symboli omputation, and is non-obvious; there is no known intuitiveanalytial derivation, so let us verify it by analytial hand redution for the \ three term" problem for whih wealready know the solution. Beause the fator of 1=3 has been removed from the numerator and denominator of theformula for h�1 here (see appendix), this numerator is a fator of 3 greater than the numerator, (gh)�Lg, of eqn (85).Our obetive then, is to prove,3 � (gh)�Lg � 1 � h�(hh�)�R + 2 � (h�L(h�Rh�L)�R)�R for; h � �h3 (104)One the numerators have been proven equal, the denominators are automatially then the same, sine, in bothases, the denominator is just the fator h times the numerator. Then, it follows, the inverse, h�1, and the solution,q, must be equivalent also. So, let's prove this identity, by hand. First we ompute the four onjugated states of h,h = A1B01 + A2B02 + A3B03h� = A�1B0�1 + A�2B0�2 + A�3B0�3h�R = A�1B01 + A�2B02 + A�3B03h�L = A1B0�1 + A2B0�2 + A3B0�3 (105)Then, we ompute the four intermediate onjugated squares � hh,hh� = (A1B01 +A2B02 +A3B03)(A�1B0�1 +A�2B0�2 +A�3B0�3 )(hh�)�R = ((A1B01 +A2B02 +A3B03)(A�1B0�1 +A�2B0�2 +A�3B0�3 ))�Rh�Rh�L = (A�1B01 +A�2B02 +A�3B03)(A1B0�1 +A2B0�2 +A3B0�3 )(h�Rh�L)�R = ((A�1B01 +A�2B02 +A�3B03)(A1B0�1 +A2B0�2 +A3B0�3 ))�R (106)hh� = (hh�)�R = h�Rh�L = (h�Rh�L)�R =+A1 � A�1 �B01 � B0�1 +A1 � A�1 �B01 � B0�1 +A�1 � A1 �B01 �B0�1 +A�1 � A1 �B01 �B0�1+A1 � A�2 �B01 � B0�2 +A2 � A�1 �B01 � B0�2 +A�1 � A2 �B01 �B0�2 +A�2 � A1 �B01 �B0�2+A1 � A�3 �B01 � B0�3 +A3 � A�1 �B01 � B0�3 +A�1 � A3 �B01 �B0�3 +A�3 � A1 �B01 �B0�3+A2 � A�1 �B02 � B0�1 +A1 � A�2 �B02 � B0�1 +A�2 � A1 �B02 �B0�1 +A�1 � A2 �B02 �B0�1+A2 � A�2 �B02 � B0�2 +A2 � A�2 �B02 � B0�2 +A�2 � A2 �B02 �B0�2 +A�2 � A2 �B02 �B0�2+A2 � A�3 �B02 � B0�3 +A3 � A�2 �B02 � B0�3 +A�2 � A3 �B02 �B0�3 +A�3 � A2 �B02 �B0�3+A3 � A�1 �B03 � B0�1 +A1 � A�3 �B03 � B0�1 +A�3 � A1 �B03 �B0�1 +A�1 � A3 �B03 �B0�1+A3 � A�2 �B03 � B0�2 +A2 � A�3 �B03 � B0�2 +A�3 � A2 �B03 �B0�2 +A�2 � A3 �B03 �B0�2+A3 � A�3 �B03 � B0�3 +A3 � A�3 �B03 � B0�3 +A�3 � A3 �B03 �B0�3 +A�3 � A3 �B03 �B0�3 (107)



19Now, we ompute the �nal onjugated ubes � hhh,h�(hh�)�R = (h�L(h�Rh�L)�R)�R = hy =+A�1 � A1 �A�1 � B0�1 �B01 �B0�1 +A�1 �A1 � A�1 �B0�1 � B01 � B0�1 +A�1 �A1 � A�1 � B0�1 �B01 � B0�1+A�1 � A1 �A�2 � B0�1 �B01 �B0�2 +A�1 �A1 � A�2 �B0�1 � B01 � B0�2 +A�1 �A1 � A�2 � B0�1 �B01 � B0�2+A�1 � A1 �A�3 � B0�1 �B01 �B0�3 +A�1 �A1 � A�3 �B0�1 � B01 � B0�3 +A�1 �A1 � A�3 � B0�1 �B01 � B0�3+A�1 � A2 �A�1 � B0�1 �B01 �B0�2 +A�1 �A2 � A�1 �B0�1 � B01 � B0�2 +A�1 �A2 � A�1 � B0�1 �B01 � B0�2+A�1 � A2 �A�2 � B0�2 �B01 �B0�2 +A�1 �A2 � A�2 �B0�2 � B01 � B0�2 +A�1 �A2 � A�2 � B0�2 �B01 � B0�2+A�1 � A2 �A�3 � B0�1 �B03 �B0�2 +A�1 �A2 �A�3 �B0�3 �B01 �B0�2 +A�1 �A2 � A�3 � B0�1 �B03 � B0�2+A�1 � A3 �A�1 � B0�1 �B01 �B0�3 +A�1 �A3 � A�1 �B0�1 � B01 � B0�3 +A�1 �A3 � A�1 � B0�1 �B01 � B0�3+A�1 �A3 �A�2 �B0�1 �B02 �B0�3 +A�1 �A3 �A�2 �B0�2 �B01 �B0�3 +A�1 �A3 � A�2 � B0�3 �B02 � B0�1+A�1 � A3 �A�3 � B0�3 �B01 �B0�3 +A�1 �A3 � A�3 �B0�3 � B01 � B0�3 +A�1 �A3 � A�3 � B0�3 �B01 � B0�3+A�2 � A1 �A�1 � B0�1 �B02 �B0�1 +A�2 �A1 � A�1 �B0�1 � B02 � B0�1 +A�2 �A1 � A�1 � B0�1 �B02 � B0�1+A�2 � A1 �A�2 � B0�2 �B02 �B0�1 +A�2 �A1 � A�2 �B0�2 � B02 � B0�1 +A�2 �A1 � A�2 � B0�2 �B02 � B0�1+A�2 �A1 �A�3 �B0�2 �B03 �B0�1 +A�2 �A1 �A�3 �B0�3 �B02 �B0�1 +A�2 �A1 � A�3 � B0�1 �B03 � B0�1+A�2 � A2 �A�1 � B0�2 �B02 �B0�1 +A�2 �A2 � A�1 �B0�2 � B02 � B0�1 +A�2 �A2 � A�1 � B0�2 �B02 � B0�1+A�2 � A2 �A�2 � B0�2 �B02 �B0�2 +A�2 �A2 � A�2 �B0�2 � B02 � B0�2 +A�2 �A2 � A�2 � B0�2 �B02 � B0�2+A�2 � A2 �A�3 � B0�2 �B02 �B0�3 +A�2 �A2 � A�3 �B0�2 � B02 � B0�3 +A�2 �A2 � A�3 � B0�2 �B02 � B0�3+A�2 �A3 �A�1 �B0�2 �B01 �B0�3 +A�2 �A3 �A�1 �B0�1 �B02 �B0�3 +A�2 �A3 � A�1 � B0�3 �B01 � B0�2+A�2 � A3 �A�2 � B0�3 �B02 �B0�2 +A�2 �A3 � A�2 �B0�3 � B02 � B0�2 +A�2 �A3 � A�2 � B0�3 �B02 � B0�2+A�2 � A3 �A�3 � B0�3 �B02 �B0�3 +A�2 �A3 � A�3 �B0�3 � B02 � B0�3 +A�2 �A3 � A�3 � B0�3 �B02 � B0�3+A�3 � A1 �A�1 � B0�1 �B03 �B0�1 +A�3 �A1 � A�1 �B0�1 � B03 � B0�1 +A�3 �A1 � A�1 � B0�1 �B03 � B0�1+A�3 �A1 �A�2 �B0�3 �B02 �B0�1 +A�3 �A1 �A�2 �B0�2 �B03 �B0�1 +A�3 �A1 � A�2 � B0�1 �B02 � B0�3+A�3 � A1 �A�3 � B0�1 �B03 �B0�3 +A�3 �A1 � A�3 �B0�1 � B03 � B0�3 +A�3 �A1 � A�3 � B0�1 �B03 � B0�3+A�3 � A2 �A�1 � B0�3 �B01 �B0�2 +A�3 �A2 �A�1 �B0�1 �B03 �B0�2 +A�3 �A2 � A�1 � B0�3 �B01 � B0�2+A�3 � A2 �A�2 � B0�2 �B03 �B0�2 +A�3 �A2 � A�2 �B0�2 � B03 � B0�2 +A�3 �A2 � A�2 � B0�2 �B03 � B0�2+A�3 � A2 �A�3 � B0�3 �B03 �B0�2 +A�3 �A2 � A�3 �B0�3 � B03 � B0�2 +A�3 �A2 � A�3 � B0�3 �B03 � B0�2+A�3 � A3 �A�1 � B0�3 �B03 �B0�1 +A�3 �A3 � A�1 �B0�3 � B03 � B0�1 +A�3 �A3 � A�1 � B0�3 �B03 � B0�1+A�3 � A3 �A�2 � B0�3 �B03 �B0�2 +A�3 �A3 � A�2 �B0�3 � B03 � B0�2 +A�3 �A3 � A�2 � B0�3 �B03 � B0�2+A�3 � A3 �A�3 � B0�3 �B03 �B0�3 +A�3 �A3 � A�3 �B0�3 � B03 � B0�3 +A�3 �A3 � A�3 � B0�3 �B03 � B0�3

(108)

The �rst two olumns show the two �nal ubes. The intermediate ube, h�L(h�Rh�L)�R, is not shown, but thereader is invited to ompute this ube and verify for himself that, when right onjugated, ( � )�R, it yields the resultsin the middle olumn. The olumn on the right is the adjoint in the form given in eqn (85), i.e. hy = (gh)�Lg;all three olumns are put in the same onventional \standard order" we previously de�ned there, so that theymay be easily ompared. Eah row in the table shows, therefore, the related bi-ubi terms, A��A�A�� B0�� B0�B0�� ,for eah of the two ubes and the adjoint. A review of the table entries reveals that all but 6 of the 27 rows haveidential bi-ubi terms in them. This means that adding a given term from the �rst ube to twie that fromthe seond ube will indeed give three times the term in the adjoint, for eah row in most ases. On a term byterm basis, therefore, most of the rows verify the identity in (104). The bi-ubi entries shown in boldfae textare the terms that di�er from that in the adjoint. So, we must separate these terms and treat them as groupto prove the identity. These six rows happen to ontain the same group of six bi-ubi terms that form the lastexpression blok in the solution for (gh)�Lg given in eqn (88). These are the terms with all three subsript indiiesunique. The terms with two or three repeated indies are idential in the two ubes and the adjoint. The easiestway to prove the identity (104), therefore, is to subtrat 3 times the adjoint from the sum of the �rst ube andtwie the seond ube, whih redues the problem to that of proving that the following expression blok redues to zero;� = 1 � h�(hh�)�R + 2 � (h�L(h�Rh�L)�R)�R)�R � 3 � (gh)�Lg =+1 �A�1 � A2 �A�3 � B0�1 �B03 �B0�2 + 2 � A�1 � A2 �A�3 � B0�3 �B01 �B0�2 � 3 � A�1 �A2 � A�3 � B0�1 �B03 � B0�2+1 �A�1 � A3 �A�2 � B0�1 �B02 �B0�3 + 2 � A�1 � A3 �A�2 � B0�2 �B01 �B0�3 � 3 � A�1 �A3 � A�2 � B0�3 �B02 � B0�1+1 �A�2 � A1 �A�3 � B0�2 �B03 �B0�1 + 2 � A�2 � A1 �A�3 � B0�3 �B02 �B0�1 � 3 � A�2 �A1 � A�3 � B0�1 �B03 � B0�2+1 �A�2 � A3 �A�1 � B0�2 �B01 �B0�3 + 2 � A�2 � A3 �A�1 � B0�1 �B02 �B0�3 � 3 � A�2 �A3 � A�1 � B0�3 �B01 � B0�2+1 �A�3 � A1 �A�2 � B0�3 �B02 �B0�1 + 2 � A�3 � A1 �A�2 � B0�2 �B03 �B0�1 � 3 � A�3 �A1 � A�2 � B0�1 �B02 � B0�3+1 �A�3 � A2 �A�1 � B0�3 �B01 �B0�2 + 2 � A�3 � A2 �A�1 � B0�1 �B03 �B0�2 � 3 � A�3 �A2 � A�1 � B0�3 �B01 � B0�2 (109)



20To redue this expression blok, we �rst expand the right and left ubi quaternion fators in other terms, so thatthe highest order|i.e. ubi|term is the same, A�1A2A�3 or B0�1 B02B0�3 , for all six fator permutations.A�1A2A�3 = A�1A2A�3A�1A3A�2 = A�1(2�1 �A2A�3) = A�12�1 �A�1A2A�3A�2A1A�3 = (2�3 �A�1A2)A�3 = 2�3A�3 �A�1A2A�3 (110)A�2A3A�1 = A�2(2�2 �A1A�3) = A�22�2 �A�2A1A�3 = A�22�2 � (2�3 �A�1A2)A�3 = A�22�2 � 2�3A�3 +A�1A2A�3A�3A1A�2 = (2�2 �A�1A3)A�2 = 2�2A�2 �A�1A3A�2 = 2�2A�2 �A�1(2�1 �A2A�3) = 2�2A�2 �A�12�1 +A�1A2A�3A�3A2A�1 = (2�1 �A�2A3)A�1 = 2�1A�1 �A�2A3A�1 = 2�1A�1 �A�2(2�2 �A1A�3) = 2�1A�1 �A�22�2 +A�2A1A�3= 2�1A�1 �A�22�2 + (2�3 � A�1A2)A�3 = (2�1A�1 �A�22�2 + 2�3A�3 �A�1A2A�3)B0�1 B02B0�3 = B0�1 B02B0�3B0�1 B03B0�2 = B0�1 (2�1 �B02B0�3 ) = B0�1 2�1 �B0�1 B02B0�3B0�2 B01B0�3 = (2�3 �B0�1 B02)B0�3 = 2�3B0�3 �B0�1 B02B0�3 (111)B0�2 B03B0�1 = B0�2 (2�2 �B01B0�3 ) = B0�2 2�2 �B0�2 B01B0�3 = B0�2 2�2 � (2�3 �B0�1 B02)B0�3 = B0�2 2�2 � 2�3B0�3 +B0�1 B02B0�3B0�3 B01B0�2 = (2�2 �B0�1 B03)B0�2 = 2�2B0�2 �B0�1 B03B0�2 = 2�2B0�2 �B0�1 (2�1 �B02B0�3 ) = 2�2B0�2 � B0�1 2�1 +B0�1 B02B0�3B0�3 B02B0�1 = (2�1 �B0�2 B03)B0�1 = 2�1B0�1 �B0�2 B03B0�1 = 2�1B0�1 �B0�2 (2�2 �B01B0�3 ) = 2�1B0�1 � B0�2 2�2 +B0�2 B01B0�3= 2�1B0�1 �B0�2 2�2 + (2�3 �B0�1 B02)B0�3 = 2�1B0�1 �B0�2 2�2 + 2�3B0�3 �B0�1 B02B0�3Then the results for the A-ubes, A�AA�, are substituted, and the expression blok redued and re-arranged; weobtain; � = (�2 � A�1A2A�3 + 4 � 2�1A�1 � 1 � 2�2A�2 � 2 � 2�3A�3)B0�1 B02B0�3+(�1 �A�1A2A�3 + 2 � 2�1A�1 � 2 � 2�2A�2 � 1 � 2�3A�3)B0�1 B03B0�2+(�1 �A�1A2A�3 + 2 � 2�1A�1 + 1 � 2�2A�2 � 1 � 2�3A�3)B0�2 B01B0�3+(+1 �A�1A2A�3 � 2 � 2�1A�1 + 2 � 2�2A�2 + 1 � 2�3A�3)B0�2 B03B0�1+(+1 �A�1A2A�3 � 2 � 2�1A�1 � 1 � 2�2A�2 + 1 � 2�3A�3)B0�3 B01B0�2+(+2 �A�1A2A�3 � 4 � 2�1A�1 + 1 � 2�2A�2 + 2 � 2�3A�3)B0�3 B02B0�1 (112)Finally, the results for the B0-ubes, B0�B0B0�, are substituted, and the expression blok simpli�es to zero;� = +1 �A�1A2A�3B0�1 B02B0�3+1 �A�1A2A�3B0�1 B02B0�3+1 �A�1A2A�3B0�1 B02B0�3+1 �A�1A2A�3B0�1 B02B0�3�2 �A�1A2A�3B0�1 B02B0�3�2 �A�1A2A�3B0�1 B02B0�3+2 �A�1A2A�32�1B0�1 +1 �A�1A2A�32�2B0�2 +2 �A�1A2A�32�3B0�3�1 �A�1A2A�3B0�1 2�1 +1 �A�1A2A�3B0�2 2�2 �1 �A�1A2A�32�3B0�3�1 �A�1A2A�3B0�1 2�1 �2 �A�1A2A�3B0�2 2�2 �1 �A�1A2A�32�3B0�3+4 � 2�1A�1B0�1 B02B0�3 +2 � 2�2A�2B0�1 B02B0�3 +1 � 2�3A�3B0�1 B02B0�3+4 � 2�1A�1B0�1 B02B0�3 +2 � 2�2A�2B0�1 B02B0�3 +1 � 2�3A�3B0�1 B02B0�3�2 � 2�1A�1B0�1 B02B0�3 �1 � 2�2A�2B0�1 B02B0�3 +1 � 2�3A�3B0�1 B02B0�3�2 � 2�1A�1B0�1 B02B0�3 �1 � 2�2A�2B0�1 B02B0�3 +1 � 2�3A�3B0�1 B02B0�3�2 � 2�1A�1B0�1 B02B0�3 �1 � 2�2A�2B0�1 B02B0�3 �2 � 2�3A�3B0�1 B02B0�3�2 � 2�1A�1B0�1 B02B0�3 �1 � 2�2A�2B0�1 B02B0�3 �2 � 2�3A�3B0�1 B02B0�3+2 � 2�1A�1B0�1 2�1 +1 � 2�2A�22�1B0�1 +2 � 2�3A�32�1B0�1+2 � 2�1A�1B0�1 2�1 +1 � 2�2A�2B0�1 2�1 �1 � 2�3A�3B0�1 2�1�4 � 2�1A�12�1B0�1 �2 � 2�2A�2B0�1 2�1 �1 � 2�3A�3B0�1 2�1+4 � 2�1A�1B0�2 2�2 �1 � 2�2A�22�2B0�2 +1 � 2�3A�32�2B0�2�2 � 2�1A�12�2B0�2 �1 � 2�2A�2B0�2 2�2 +1 � 2�3A�3B0�2 2�2�2 � 2�1A�1B0�2 2�2 +2 � 2�2A�2B0�2 2�2 �2 � 2�3A�3B0�2 2�2+2 � 2�1A�12�3B0�3 +1 � 2�2A�22�3B0�3 +2 � 2�3A�32�3B0�3+2 � 2�1A�12�3B0�3 +1 � 2�2A�22�3B0�3 �1 � 2�3A�32�3B0�3�4 � 2�1A�12�3B0�3 �2 � 2�2A�22�3B0�3 �1 � 2�3A�32�3B0�3= 0 q.e.d.
(113)



21This veri�es that the \Gilgamesh Solution" produes the same result for the \ three term" problem, as that whih wefound previously by our initial alternate method. But, the new method solves the n-term linear problem also, and isthus the general solution to the arbitrary linear problem. This is the \general formula for all possible unique solutions"to the n-term linear problem. When no general unique solution exists, there may be several speial ase solutions,but these are singular solutions, and so are not given by this method. However, what is also given by the Gilgameshformula, is the neessary onditions for the existane of a general unique solution for any given n-term problem. Thatthis is so, follows immediately from equivalene of the hexpentaquaternion algebra to ordinary matrix algebra. Thisondition, expressed entirely in quaternion variables, is that the determinant of H , the matrix form of h, is non-zero;det(H) 6= 0: Previous art gave this neessary ondition formulated with the omponents of the quaternions, but notin the quaternions themselves! As disussed in the appendix , the Gilgamesh solution is obtained by onstrutinga quaternion expansion of Hy, the adjoint of the matrix H , and then dividing by the quaternion expansion of thedeterminant, det(H). These partiular quaternion expansions are given in (A-53) and (A-54), and repeated here;Hy = 13 �H�(HH�)�R + 23 � (H�L(H�RH�L)�R)�R (114)det(H) = 13 �H�(HH�)�RH + 23 � (H�L(H�RH�L)�R)�RH (115)With these onstrutions, when the h � H is in bilinear form, we an substitute the H = PAiB0j to obtain theexpressions for the adjoint and determinant in whole quaternions. The omponents of the quaternions are neverreferened at all. The two ubes are expanded by the forms given in (A-57) and (A-58), and allow us to write theadjoint and determinant in the original Ak and Bk quaternion parameters,Hy = 13 �X�A�iAkA�j + 2A�jAkA�i �B0�i B0jB0�k (116)det(H) = 13 �X�A�iAkA�j + 2A�jAkA�i �AlB0�i B0jB0�k B0l (117)At �rst glane, the adjoint appears to have 3n3 terms of the bi-ubi form A��A�A��B0�� B0�B0�� ; n3 ontributedby the �rst ube, and 2n3 ontributed by the seond ube. However, a re-arrangment shows that these terms anall be re-written 3 � A��A�A�� B0�� B0�B0�� , whene the 1=3 fator preeeding the summation then redues the ountto exatly n3. Let us see how this ours. The permutations of the three ijk indiies an be partitioned intothree sets: In the �rst set, all indiies are the same, i = j = k ; in the seond set, exatly two indiies are equal,i = j 6= k j k = i 6= j j j = k 6= i; and in the third set, all indiies are unique, i 6= j & j 6= k & k 6= i. This partitionsthe summation for the adjoint into three distint partial sums; let's all them T1; T2; T3, so,Hy = 13 � T1 + 13 � T2 + 13 � T3 (118)T1 = Xi (A�iAiA�i + 2A�iAiA�i )B0�i B0iB0�i (119)T2 = Xi6=j ��A�iAjA�i + 2A�iAjA�i �B0�i B0iB0�j + �A�iAiA�j + 2A�jAiA�i �B0�i B0jB0�i + �A�iAjA�j + 2A�jAjA�i �B0�i B0jB0�j � (120)T3 = Xi6=j;j 6=k;k 6=i �A�iAkA�j + 2A�jAkA�i �B0�i B0jB0�k (121)The �rst partial sum, T1, is readily observed to be redued to the sum of 3 � A�iAiA�iB0�i B0iB0�i , so, with the 1=3fator in front, this ontributes just n terms of the form A�iAiA�iB0�i B0iB0�i to the adjoint. The seond partialsum, T2, onsists of three parts, eah of whih an be independently re-written with the 3 fator. The �rst part isimmediately seen to be 3 �A�iAjA�iB0�i B0iB0�j . The remaining two parts both ontain the salar jAij2 = A�iAi = AiA�i ,whih therefore ommutes with the third A-quaternion, so we may reorder the fators and write 3 �A�iAiA�jB0�i B0jB0�iand 3 � A�iAjA�jB0�i B0jB0�j for these parts. Eah of the three parts of T2 ontains 3 � n � (n � 1) terms, and the 1=3fator therefore redues the ontribution to n(n� 1) to the adjoint from eah part, or a total of 3n(n� 1) from theomplete T2 summation. These two partial sums an therefore be re-written;T1 = 3 �Xi A�iAiA�iB0�i B0iB0�i (122)T2 = 3 �Xi6=j �A�iAjA�iB0�i B0iB0�j + A�iAiA�jB0�i B0jB0�i +A�iAjA�jB0�i B0jB0�j � (123)



22The redution of the third partial sum, T3, is the least obvious. But, in fat, we just solved this problem whenevaluating the \ three term" solution above. This is the sum of unique triple indiies, ijk , and for every partiulartriple there are six permutations that give rise to 6 terms being ontributed from the �rst ube and 12 terms ontributedfrom the seond ube. These 18 terms are \olletively equivalent" to 3 times another di�erent sum of six terms, asshown in the redution of the � ! 0 in eqn (109). The fat that these 18 terms from the \Gilgamesh Solution"are equivalent to 3 times another blok of 6 terms, is independent of the indiies hosen. We an replae the 123indiies with any arbitrary unique ijk triple and re-write the orresponding \Gilgamesh triple" expression blok interms of 3 times the orresponding 6-term blok. The 6-term blok in (88) enodes the speial ordering of the indexpermutations required to math the unique triple parts of the Gilgamesh Solution. It is useful, therefore, not onlyfor the \ three term" solution, but also for the n-term solution as well. So, let us take that blok and replae the 123partiular numeri indiies with general ijk indiies, and de�ne Vijk to be this original blok of expressions;Vijk = A�i Aj A�k B0�i B0k B0�j+ A�i Ak A�j B0�k B0j B0�i+ A�j Ai A�k B0�i B0k B0�j (124)+ A�j Ak A�i B0�k B0i B0�j+ A�k AiA�j B0�i B0j B0�k+ A�k Aj A�i B0�k B0i B0�jWe then have the following identity,Xi; j; k 2 fa; b; gi 6= j; j 6= k; k 6= i �A�iAkA�j + 2A�jAkA�i �B0�i B0jB0�k = 3 � Vab (125)On the l-h-s, we have the partiular index ordering permutations that de�ne the Gilgamesh unique triple 18-termexpression blok onstrution; and on the r-h-s, we have the speial index ordering permutation for the 6-termblok, revealed by the study of the \three term" solution, that mathes this expression blok with a fator of 3. Thepartial sum, T3, is then seen as the summation of 18-term expression blok sums, and we an write,T3 = 3 �XVab (126)where the P is now over the n!=(3!(n� 1)!) \unique triples" that make up T3. Sine, all three partial sums, T1; T2;and T3; are reduible to 3 times the sum of bi-ubi terms of the form A�� A�A��B0�� B0�B0�� , and the adjoint Hy is 1=3the sum of the partials, it follows that the original 3n3 bi-ubi terms that appear in the Gilgamesh formula reallyontribute just n3 of these bi-ubi terms to the adjoint. q.e.d.The breakdown in the term ounts is as follows;n(T1) = 3 � nn(T2) = 3 � n � (n� 1) + 3 � n � (n� 1) + 3 � n � (n� 1)n(T3) = 3 � n!3! � (n� 3)! � 6n(Hy) = 13 (n(T1) + n(T2) + n(T3)) (127)= 13 � � 3 � n+ 3 � n � (n� 1) + 3 � n � (n� 1) + 3 � n � (n� 1) + 3 � n!3! � (n� 3)! � 6 �= n+ 3 � n � (n� 1) + n � (n� 1) � (n� 2)= n+ 3n2 � 3n+ n3 � 3n2 + 2n= n3



23The determinant formula, given in (117), ontains both right handed and left handed quater-nions. But this is just a salar, det(H) 2 R, so we an replae the left handed quaternions with their righthanded ounterparts. The only rules given in our opening page table that govern these replaements, however, are,B0 + B0� = B + B�, and, B0�B0 = jBj2 = B�B. So, we must show how these lead us to replae the left hand inthe more ompliated determinant formula, of bi-quarti terms, like A�jAkA�iAlB0�i B0jB0�k B0l . We must use theseelementary replaement rules to prove that det(H) is a salar; for even though we know it's a salar already, fromthe analysis of the omponents in the appendix , we don't want to always have to refer to the omponents of aquaternion to establish this result. One important observation to make is that, when in the left hand form, theB0-fators ommute with the A-fators, but one we onvert to right hand, the B-fators no longer ommute withthe A-fators; the formula omposition is then apparently �xed. Yet, beause of the exibility to re-onvert theformula bak into the dual right hand left hand form again, and move the B0-fators around, the formula mustpossess a ertain amount of re-arrangement symmetry in the exhange of these A and B-fators among themselves.This kind of symmetry is exploited in many of the formulas met above, in the appliation of the quadrati salar,2�ij = B0�i B0j +B0�j B0i = (BjB�i )0+(BiB�j )0 = BjB�i +BiB�j = B�i Bj +B�jBi = BiB�j +BjB�i et.., to redue and simplify variousexpressions. We �nd an index exhange symmetry, �ij = �ji, a hand transformation symmetry, B0� ! B�; B� ! B0� , aonjugation swap symmetry, B�� B� ! B�B�� , and a yli permutation symmetry, B�i Bj ! BjB�i , all simultaneouslyavailable within the same quadrati onstrution, leading to several variations on the form of expression. What weneed is to analyse the determinant formula in like manner; and we shall therefore make use of these known quadratisymmetries to work out our result.First we observe that the four ijkl indiies an be partitioned into �ve disjoint sets; all them, D1; D2; D3; D4; D5.In the �rst set, D1, all indiies are equal; in the seond set, D2, exatly three indiies are equal; in the third set, D3,two pairs of indiies are equal; in the fourth set, D4, exatly one pair of indiies are equal; and in the �fth set, D5,all indiies are unique. The following table shows the index ombination divisions.: �A�iAkA�j + 2A�jAkA�i � AlB0�i B0jB0�k B0l i; j; k; l = 1; 2; � � � ; nD1 ( A�iAiA�i + 2A�iAiA�i ) AiB0�i B0iB0�i B0i i = j = k = lD2 ( A�iAiA�i + 2A�iAiA�i ) AlB0�i B0iB0�i B0l i = j = k 6= l� A�iAiA�j + 2A�jAiA�i � AiB0�i B0jB0�i B0i i = k = l 6= j( A�iAkA�i + 2A�iAkA�i ) AiB0�i B0iB0�k B0i i = j = l 6= k� A�iAjA�j + 2A�jAjA�i � AjB0�i B0jB0�j B0j j = k = l 6= iD3 ( A�iAkA�i + 2A�iAkA�i ) AkB0�i B0iB0�k B0k i = j; k = l; i 6= k� A�iAjA�j + 2A�jAjA�i � AiB0�i B0jB0�j B0i i = l; j = k; i 6= j� A�iAiA�j + 2A�jAiA�i � AjB0�i B0jB0�i B0j i = k; j = l; i 6= jD4 ( A�iAkA�i + 2A�iAkA�i ) AlB0�i B0iB0�k B0l i = j; i 6= k; i 6= l; k 6= l� A�iAiA�j + 2A�jAiA�i � AlB0�i B0jB0�i B0l i = k; i 6= j; i 6= l; j 6= l� A�iAkA�j + 2A�jAkA�i � AiB0�i B0jB0�k B0i i = l; i 6= j; i 6= k; j 6= k� A�iAjA�j + 2A�jAjA�i � AlB0�i B0jB0�j B0l j = k; i 6= j; i 6= l; j 6= l� A�iAkA�j + 2A�jAkA�i � AjB0�i B0jB0�k B0j j = l; i 6= j; i 6= k; j 6= k� A�iAkA�j + 2A�jAkA�i � AkB0�i B0jB0�k B0k k = l; i 6= j; i 6= k; j 6= kD5 � A�iAkA�j + 2A�jAkA�i � AlB0�i B0jB0�k B0l i 6= j; i 6= k; i 6= l; j 6= k; j 6= l; k 6= l
(128)

The �rst set of bi-quarti terms, D1, is learly salar. On a term by term basis, eah term has the form, jAij4jBij4 ,and these an immediately be written in the right hand, either A�iAiA�iAiB�i BiB�i Bi , by simply removing the 0 marksfrom the B0-fators, or A�iAiA�iAi(B0�i B0iB0�i B0i) ! A�iAiA�iAi(BiB�i BiB�i )0 ! A�iAiA�iAiBiB�i BiB�i implementingfator reversal along with the hand hange. The D2 onsists of four Gilgamesh type omposite bi-quarti terms, whih



24fall into pairs. We put these pairs in onseutive rows for onveniene, and re-arrange as follows;D2 = (A�iAiA�i + 2A�iAiA�i )AlB0�i B0iB0�i B0l+ �A�iAiA�j + 2A�jAiA�i �AiB0�i B0jB0�i B0i (129)+ (A�iAkA�i + 2A�iAkA�i )AiB0�i B0iB0�k B0i+ �A�iAjA�j + 2A�jAjA�i �AjB0�i B0jB0�j B0j= (A�iAi + 2A�iAi)B0�i B0i � A�iAjB0�i B0j+ (A�iAi + 2AiA�i )B0�i B0i �A�jAiB0�i B0j (130)+ (A�iAi + 2A�iAi)B0�i B0i �A�iAjB0�j B0i+ (AiA�i + 2A�iAi)B0iB0�i �A�jAiB0�j B0iWe re-label the index l to j in the �rst row, and k to j in the third row, so we only have the two indiies, i; j, in thesummation, and we swap the i; j, labels in the fourth row, so we an arrange the pre�x A-fators into the same form.We move the A� quaternions around, using the fat that A�iAi is a salar, and we gather the similar fators to theleft, leaving those that are di�erent from one row to the next on the right. Then we add the �rst pair of rows andadd the seond pair of rows to form the quadrati salars, A�iAj +A�jAi 2 R,D2 = (A�iAi + 2A�iAi)B0iB0�i (A�iAj +A�jAi)B0�i B0j (131)+ (A�iAi + 2A�iAi)B0�i B0i(A�iAj + A�jAi)B0�j B0i= (A�iAi + 2A�iAi)B0iB0�i (A�iAj +A�jAi)(B0�i B0j +B0�j B0i) (132)= (A�iAi + 2A�iAi)B�i Bi(A�iAj +A�jAi)(BjB�i +BiB�j ) (133)= (A�iAi + 2A�iAi)B�i Bi(A�iAj +A�jAi)BjB�i (134)+ (A�iAi + 2A�iAi)BiB�i (A�iAj +A�jAi)BiB�jWe add these results together again, to form the �nal salar (132), inorporating the B0-fator quadrati salar,B0�i B0j +B�jB0i 2 R, now, to reveal that the summation of all terms in this seond set results in a simple salar, D2 2 R.Beause of the exibility provided by the many di�erent equivalent ways to re-arrange the quadrati salar, we aneither permute the fators when removing the prime 0 marks, i.e. B0�i B0j + B0�j B0i = (BjB�i )0 + (BiB�j )0 = BjB�i + BiB�j ,or just remove the primes immediately without reversing the fator order, e.g. B0�i B0j + B0�j B0i = B�i Bj + B�jBi, and wehose to reverse, beause later we shall �nd that reversal is the only shared option available in all the Dj sets, whenwe get to the more ompliated onstrution in D5. The remaining task is to reverse the aggregation steps above, torestore the expression blok, as lose as possible, to its original omposition form, while implementing fator reversal,with these right hand Bs substituting for the previous left hand B0s;D2 = (A�iAi + 2A�iAi)BiB�i A�iAjBjB�i+ (A�iAi + 2AiA�i )BiB�i A�jAiBjB�i (135)+ (A�iAi + 2A�iAi)BiB�i A�iAjBiB�j+ (AiA�i + 2A�iAi)B�i BiA�jAiBiB�j= (A�iAiA�i + 2A�iAiA�i )AlBlB�i BiB�i+ �A�iAiA�j + 2A�jAiA�i �AiBiB�i BjB�i (136)+ (A�iAkA�i + 2A�iAkA�i )AiBiB�kBiB�i+ �A�iAjA�j + 2A�jAjA�i �AjBjB�jBjB�iThe multi-step reversal is easily done, and we even reverse our label hanges to make it oÆial. The order andplaement of all the quaternion fators is restored to the original omposition, and the only hange is that the primemarks 0 are removed and B-fator order is reversed. The magi is largely aomplished by virtue of those norm salarsjBij2 = B�i Bi, whih allow us to put these B-fator pairs virtually anywhere in the multi-fator produts to restore



25the order. For D2, we have the option to just remove the left hand 0 marks and write, B�i BjB�kBl, or to inorporatethe reversal, as in, B0�i B0jB0�k B0l ! (BlB�kBjB�i )0 ! BlB�kBjB�i ; the ultimate result of the summation is the same,sine, like D1, this re-arrangement symmetry is a property of this partial sum. Now, let's look at D3.D3 = (A�iAkA�i + 2A�iAkA�i )AkB0�i B0iB0�k B0k+ �A�iAjA�j + 2A�jAjA�i �AiB0�i B0jB0�j B0i (137)+ �A�iAiA�j + 2A�jAiA�i �AjB0�i B0jB0�i B0j= 3A�iAjA�iAjB0�i B0iB0�j B0j+ 3A�iAjA�jAiB0�i B0iB0jB0�j (138)+ 3A�jAiA�iAjB0�i B0jB0�i B0j= 3A�iAj(A�iAj +A�jAi)B0�i B0iB0�j B0j (139)+ 3(A�iAj)�(A�iAj)(B0�i B0j)2Re-labeling k to j in the �rst row, juggling fators around, and �nally ombining the �rst two rows into one, weend up with two terms to onsider (139). Now we use the fat that these terms are summed over all values, i; j =1; 2; � � � ; n; i 6= j; , so that for every term, i = r; j = s, there's a omplementary term, i = s; j = r, in the samesum that an be used to pair up terms into salars using the usual quadrati salar; 3A�rAs(A�rAs + A�sAr)jBrj2jBsj2 +3A�sAr(A�sAr + A�rAs)jBsj2jBrj2 = 3(A�rAs + A�sAr)(A�sAr + A�rAs)jBsj2jBrj2. The sum of these terms, therefore, results ina salar. Looking at the last term, applying the same tehnique, we again pair up omplementary terms and write,3jArj2jAsj2(B0�r B0s)2+3jAsj2jArj2(B0�s B0r)2 = 3jArj2jAsj2((B0�r B0s)2+(B0�s B0r)2). There are a few di�erent ways to treat this, butour prefered method is to write, (B0�r B0s)2 + (B0�s B0r)2 = (B0�r B0s +B0�s B0r)2 � 2jB0rj2jB0sj2 = ((BsB�r )0 + (BrB�s )0)2 � 2jBrj2jBsj2 =(BsB�r + BrB�s )2 � 2jBrj2jBsj2, removing the 0 marks as soon as we reognise that the two given elementary rules anbe applied. Hene, the third set of terms also evaluates to salar, and D3 2 R. Reversing the steps with our righthand B replaements, we return to the same initial expression onstrution, without the prime marks and with (oroptionally without) reversed B-fators;D3 = (A�iAkA�i + 2A�iAkA�i )AkBkB�kBiB�i+ �A�iAjA�j + 2A�jAjA�i �AiBiB�jBjB�i (140)+ �A�iAiA�j + 2A�jAiA�i �AjBjB�i BjB�iThere are six Gilgamesh bi-quarti terms in the fourth set, D4, and one in the �fth set, D5, and these two partial sumsan also eah independently be shown to be salar, produing the same results when the prime marks are removedwith B-fators reversed. However, we have not yet found a simple way to do this, using general index arguments likethose above, and it seems neessary to write out all the terms and ollet them together into salar terms, in order todemonstate this result. This is a long and tedious alulation, whih has been performed by symboli omputationonly, so far, but not by hand alulation; the results for D4 and D5 appear in the 4-term solution given on the nextpage. The dediated reader is therefore invited to verify these two partial sum results on his own. For D4, all sixterms an be re-labeled to use the same three ijk indies, and one only needs to evaluate the expression for oneunique triple, e.g. ijk = 123, to establish the results. For D5, one only needs to write out the terms for one quartet ofunique indiies, so setting ijkl = 1234, and evaluating the expression, is suÆient to demonstrate the salar. Thereare 24 permutations of the 1234, leading to 24 Gilgamesh type bi-quarti terms to expand and rearrange. For theremoval of the prime 0 marks alone, it is not neessary to redue the entire expression blok for one unique quartetto salar; some terms an be left in the non-salar form, e.g. A�1A2A�3A4(B0�1 B02B0�3 B04 + B0�4 B03B0�2 B01) , where only theB-fator parts are ombined into salar forms. But, in the ase of D5, we must reverse the order of the B-fators.The D5 only ontributes terms when n � 4; and D4, only when n � 3. The determinant an therefore be written,det(H) = 13 �X�A�iAkA�j + 2A�jAkA�i �AlB0�i B0jB0�k B0l (117)= 13 �X�A�iAkA�j + 2A�jAkA�i �Al(BlB�kBjB�i )0 (141)= 13 �X�A�iAkA�j + 2A�jAkA�i �AlBlB�kBjB�i ; Au; Bv 2 HR ; u; v;2 fi; j; k; lg (142)The \Gilgamesh Formula " now allows us to easily omplete the solution for the \ four term" problem whih weattempted above, and we an �nally invert the h form of (91), to produe that solution. The result is given below.



26Hene, for the \ four term " linear problem, (n = 4),A1qB1 +A2qB2 + � � �+AnqBn = C (4)the solution is,

q̂ =

0BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB�

( +jA1j2jB1j2 � jA2j2jB2j2 � jA3j2jB3j2 � jA4j2jB4j2 )A�1B0�1 +( �jA1j2jB1j2 + jA2j2jB2j2 � jA3j2jB3j2 � jA4j2jB4j2 )A�2B0�2 +( �jA1j2jB1j2 � jA2j2jB2j2 + jA3j2jB3j2 � jA4j2jB4j2 )A�3B0�3 +( �jA1j2jB1j2 � jA2j2jB2j2 � jA3j2jB3j2 + jA4j2jB4j2 )A�4B0�4�+(jB1j22�12 + jA2j22�12)A�1B0�2 + (jB2j22�12 + jA1j22�12)A�2B0�1+(jB1j22�13 + jA3j22�13)A�1B0�3 + (jB3j22�13 + jA1j22�13)A�3B0�1+(jB1j22�14 + jA4j22�14)A�1B0�4 + (jB4j22�14 + jA1j22�14)A�4B0�1+(jB2j22�23 + jA3j22�23)A�2B0�3 + (jB3j22�23 + jA2j22�23)A�3B0�2+(jB2j22�24 + jA4j22�24)A�2B0�4 + (jB4j22�24 + jA2j22�24)A�4B0�2+(jB3j22�34 + jA4j22�34)A�3B0�4 + (jB4j22�34 + jA3j22�34)A�4B0�3�+A�1 A2 A�3 B0�1 B03 B0�2 + A�1 A3 A�2 B0�3 B02 B0�1 + A�2 A1 A�3 B0�1 B03 B0�2+A�2 A3 A�1 B0�3 B01 B0�2 + A�3 A1 A�2 B0�1 B02 B0�3 + A�3 A2 A�1 B0�3 B01 B0�2+A�1 A2 A�4 B0�1 B04 B0�2 + A�1 A4 A�2 B0�4 B02 B0�1 + A�2 A1 A�4 B0�1 B04 B0�2+A�2 A4 A�1 B0�4 B01 B0�2 + A�4 A1 A�2 B0�1 B02 B0�4 + A�4 A2 A�1 B0�4 B01 B0�2+A�1 A3 A�4 B0�1 B04 B0�3 + A�1 A4 A�3 B0�4 B03 B0�1 + A�3 A1 A�4 B0�1 B04 B0�3+A�3 A4 A�1 B0�4 B01 B0�3 + A�4 A1 A�3 B0�1 B03 B0�4 + A�4 A3 A�1 B0�4 B01 B0�3+A�2 A3 A�4 B0�2 B04 B0�3 + A�2 A4 A�3 B0�4 B03 B0�2 + A�3 A2 A�4 B0�2 B04 B0�3+A�3 A4 A�2 B0�4 B02 B0�3 + A�4 A2 A�3 B0�2 B03 B0�4 + A�4 A3 A�2 B0�4 B02 B0�3

1CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCA0BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB�

jA1j4jB1j4 + jA2j4jB2j4 + jA3j4jB3j4 + jA4j2jB4j2 D1�+4jA1j2jB1j2(�12�12 + �13�13 + �14�14)+4jA2j2jB2j2(�12�12 + �23�23 + �24�24)+4jA3j2jB3j2(�13�13 + �23�23 + �34�34) D2+4jA4j2jB4j2(�14�14 + �24�24 + �34�34)��2jA1j2jA2j2jB1j2jB2j2 � 2jA1j2jA3j2jB1j2jB3j2 � 2jA1j2jA4j2jB1j2jB4j2�2jA2j2jA3j2jB2j2jB3j2 � 2jA2j2jA4j2jB2j2jB4j2 � 2jA3j2jA4j2jB3j2jB4j2+4�212jA1j2jA2j2 + 4�213jA1j2jA3j2 + 4�214jA1j2jA4j2 D3+4�223jA2j2jA3j2 + 4�224jA2j2jA4j2 + 4�234jA3j2jA4j2+4�212jB1j2jB2j2 + 4�213jB1j2jB3j2 + 4�214jB1j2jB4j2+4�223jB2j2jB3j2 + 4�224jB2j2jB4j2 + 4�234jB3j2jB4j2��4jA1j2jB1j2(�23�23 + �24�24 + �34�34)�4jA2j2jB2j2(�13�13 + �14�14 + �34�34)�4jA3j2jB3j2(�12�12 + �14�14 + �24�24)�4jA4j2jB4j2(�12�12 + �13�13 + �23�23) D4+8jA1j2(�23�12�13 + �24�12�14 + �34�13�14)+8jA2j2(�13�12�23 + �14�12�24 + �34�23�24)+8jA3j2(�24�23�34 + �12�13�23 + �14�13�34)+8jA4j2(�12�14�24 + �13�14�34 + �23�24�34) +8jB1j2(�23�12�13 + �24�12�14 + �34�13�14)+8jB2j2(�13�12�23 + �14�12�24 + �34�23�24)+8jB3j2(�24�23�34 + �12�13�23 + �14�13�34)+8jB4j2(�12�14�24 + �13�14�34 + �23�24�34)��16�12�34�12�34 � 16�13�24�13�24 � 16�14�23�14�23 D5+16�13�24(�12�34 + �14�23) + 16�13�24(�12�34 + �14�23)+81234(�12�34 � �13�24 + �14�23) + 8Æ1234(�12�34 � �13�24 + �14�23)� 81234Æ1234

1CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCA

� Ĉ (143)

where, 2�ij = A�iAj + A�jAi ; 21234 = A�1A2A�3A4 + (A�1A2A�3A4)� i; j = 1; 2; � � � ; n = 4; i 6= j2�ij = B�i Bj + B�jBi ; 2 Æ1234 = B�1B2B�3B4 + (B�1B2B�3B4)�Ak; Bk; C; q 2 HR ; B0k 2 H L ; k = 1; 2; � � � ; n = 4: �ij ; �ij ; 1234; Æ1234 2 R;



27This \ four term" solution ontains all the detail neessary to infer the \ irreduible " n-term solution, and so writeit down in similar format. Using double subsript notation for the salars, �jk and �jk , allows us to easily generalisethese expressions. Inspetion shows there are essentially three di�erent expression bloks in the numerator. In theformula shown in eqn (143), these bloks are the separated by the � bullets. The �rst blok ontains all the termsof form A�iB0�i , whih produe A�iCB�i , that have two idential indiies. There are thus n suh terms in this blok.The seond blok ontains all the A�iB0�j terms, whih produe A�iCB�j , with a pair of dissimilar indies, i 6= j, sothere are n(n � 1) of them. The third blok ontains all the bi-ubi terms A�iAjA�kB0�a B0bB0� , whih produeA�iAjA�kCB�BbB�a , with all three subsript indiies unique. In a set of n indiies, there are n!=(3!(n� 3)!) waysto selet the 3 indiies for suh terms. For eah suh ijk unique triple, there are 3! = 6 ways to permute, andso 6-terms ontaining the same three di�erent indiies. This means the third expression blok breaks down furtherinto n!=(3!(n� 3)!) 6-term sub-bloks. Eah of these 6-term bloks an be redued to a 4-term blok, as illustratedin (88a), to ahieve a minimal term ount. But, in our solutions we keep the 6-term form, beause it's the easiestform with whih to see the index permutation symmetry by simple inspetion. However, the ability to redue these6-term bloks means that they really ontribute only 4 � n!=(3!(n � 3)!) irreduible quaternions to the numeratorterm ount. So, the number of irreduible terms in the numerator of the n-term solution is,no. of irreduible quaternion terms:n+ n � (n� 1) + 4 � n!3! � (n� 3)! = n2 + 23 � n � (n� 1) � (n� 2) = (2n3 � 3n2 + 4n)=3 (144)The r-h-s of this formula holds for all n � 1 , despite the fat that, on the l-h-s, when n = 1 , or n = 2 , thefator (n � 3)! is usually unde�ned, (we assume the onvention 0! = 1 , holds, when n = 3 ). Therefore, ouroriginal n3 numerator term ount, with the primal bi-ubi quaternion terms A�AA�B�BB�, an be redued by atmost n3 � (2n3 � 3n2 + 4n)=3 = n(n � 1)(n + 4)=3 quaternion terms for the general n-term problem. Problemswith speial Ak; Bk parameters, may, of ourse, allow for further redutions in term ount, but the general problemannot be simpli�ed any further.the n-term linear problem.The primary solution to the n-term linear equation is given in (A-61), with the method and solution, (103), basedon the Gilgamesh quaternion expansions, and the irreduible form of this solution an now also be onstruted byextending the expression bloks shown in the 4-term solution given in (143). The further n-term problems, i.e. withn > 4, add nothing new to the form of the solutions. There are essentially 3 expression bloks in the numeratorand 5 bloks in the denominator. Eah expression blok has a readily reognisable index pattern that lends to easyextension from 4 to n indiies, as the new terms introdued by the n-term problem follow the forms already presentin these exprssion bloks. The 5 partial sums, D1; D2; D3; D4; D5, that make up the determinant in the denominatorof (143) are all separated by � bullets, and marked on the r-h-s with their orresponding labels, to identify theseexpression bloks as the salars that result from these partial sums. The 4-term problem has only one unique quartet,ijkl = 1234, whih produes the D5 salar result appearing at the bottom of this formula. When n > 4, there will beseveral unique quartets, ijkl = abd , eah of whih will ontribute another expression blok equal to that shown forthe 4-term solution; one simply replaes the 1234 indiies by the abd for eah of the unique quartets and adds thenew expression sub-blok to this blok. In this way, we an write down the solution to the n-term problem, by justinspeting the 4-term solution alone, and the n-term problem an therefore also be onsidered to be ompletely solved.Further simpli�ation of the denominator is available by ombining expression blok D2 with the �rst sub-blokshown in D4, and other re-arrangements are also possible. However, we prefer to leave the formula this way, with thepartial sums learly separated, beause it renders the solution more intelligible. As previously disussed, the 6-termbloks of unique ijk triples in the numerator an also be redued, by replaing with the equivalent 4-term blok,illustrated in (88a), for minimal term ount, or replaing with the equivalent 9-term blok, illustrated in (88b), formaximum redution in the \order" of terms present. This all means that our formula (143) an be redued further,and is \a redued" but not the ultimate \irreduible" formula for the solution. This \redued" formula is justmore onvienent to remember the form of the expressions and to enable extension to the n-term solutions; and the\irreduible" form an always be readily dedued from it.Apart from the many quadrati salars, �ij and �ij , the denominators with D5 terms present ontain a number of\ quarti salars, " abd = S(A�aAbA�Ad) and Æabd = S(B�aBbB�Bd), preventing hand transform without fator reversal.



28II. LINEAR EQUATIONS IN TWO VARIABLES.A1 pB1 + C1 q D1 = E1 (145)A2 pB2 + C2 q D2 = E2A11 pB11 +A12 pB12 + � � �+A1m1 pB1m1 + C11 q D11 + C12 q D12 + � � �+ C1n1 q D1n1 = E1 (146)A21 pB21 +A22 pB22 + � � �+A2m2 pB2m2 + C21 q D21 + C22 q D22 + � � �+ C2n2 q D2n2 = E2We all the linear system \ square " when eah independent variable ontributes no more than one term in eahequation, (145), and we all the linear system \ retangular " otherwise, (146). The one hand quaternion retangularsystem an easily be onverted into a two-hand algebra square, and then solved readily. Consider the square (145);A1B01 p̂ + C1D01 q̂ = Ê1A2B02 p̂ + C2D02 q̂ = Ê2 =) �A1B01 C1D01A2B02 C2D02�� p̂̂q� = � Ê1Ê2 � (147)Multiplying the top equation by, jC2D02j2(C1D01)�, and the bottom equation by, jC1D01j2(C2D02)�, then subtratingequations to isolate the independent p variable, and working similarily for q , we get,(jC2D02j2(C1D01)�A1B01 � jC1D01j2(C2D02)�A2B02) p̂ = jC2D02j2(C1D01)�Ê1 � jC1D01j2(C2D02)�Ê2(jA2B02j2(A1B01)�C1D01 � jA1B01j2(A2B02)�C2D02) q̂ = jA2B02j2(A1B01)�Ê1 � jA1B01j2(A2B02)�Ê2 (148)This is equivalent to multiplying both sides of the matrix equation by,� jC2D02j2(C1D01)� �jC1D01j2(C2D02)�jA2B02j2(A1B01)� �jA1B01j2(A2B02)� � (149)so that we an then write the solution,0� p̂̂q 1A = 0� 1d1 00 1d21A �0� jC2D02j2(C1D01)� �jC1D01j2(C2D02)�jA2B02j2(A1B01)� �jA1B01j2(A2B02)� 1A �0� Ê1Ê2 1A (150)where,d1 =(jC2D02j2(C1D01)�A1B01 � jC1D01j2(C2D02)�A2B02) = jC1j2jC2j2jD01j2jD02j2(C1nA1 �D01nB01 �C2nA2 �D02nB02)d2 =(jA2B02j2(A1B01)�C1D01 � jA1B01j2(A2B02)�C2D02) = jA1j2jA2j2jB01j2jB02j2(A1nC1 �B01nD01 �A2nC2 � B02nD02)The d1 and d2 are 2-term bilinear hexpe fators[9℄, and their inverses are therefore given by eqn (53); substituting,A1 ! C1nA1 ; B1 ! D1=B1, and A2 ! C2nA2 ; B2 ! D2=B2, for the fators in eqn (53), the inverse of d1 an be written;d�11 = 0BB� �jC1nA1j2 � jD1=B1j2 � jC2nA2j2 � jD2=B2j2� � ((C1nA1)� � (D1=B1)0� + (C2nA2)� � (D2=B2)0�)+2 � (jC2nA2j2 � b+ jD1=B1j2 � a) � (C1nA1)� � (D2=B2)0� � 2 � (jC1nA1j2 � b+ jD2=B2j2 � a) � (C2nA2)� � (D1=B1)0�jC1j2jC2j2jD1j2jD2j2 � (jC1nA1j2 � jD1=B1j2 � jC2nA2j2 � jD2=B2j2)2+4 � (jC1nA1j2 � jD1=B1j2 + jC2nA2j2 � jD2=B2j2) � ab+ 4 � jD1=B1j2 � jD2=B2j2 � a2 + 4 � jC1nA1j2 � jC2nA2j2 � b2 � 1CCA(151)where, 2a = �(C1nA1)� � (C2nA2)� ((C1nA1)� � (C2nA2))�; 2b = (D1=B1)� � (D2=B2) + ((D1=B1)� � (D2=B2))�and with similar substitutions, the inverse of d2 an be written;d�12 = 0BB� �jA1nC1j2 � jB1=D1j2 � jA2nC2j2 � jB2=D2j2� � ((A1nC1)� � (B1=D1)0� + (A2nC2)� � (B2=D2)0�)+2 � (jA2nC2j2 � b+ jB1=D1j2 � a) � (A1nC1)� � (B2=D2)0� � 2 � (jA1nC1j2 � b+ jB2=D2j2 � a) � (A2nC2)� � (B1=D1)0�jA1j2jA2j2jB1j2jB2j2 � (jA1nC1j2 � jB1=D1j2 � jA2nC2j2 � jB2=D2j2)2+4 � (jA1nC1j2 � jB1=D1j2 + jA2nC2j2 � jB2=D2j2) � ab+ 4 � jB1=D1j2 � jB2=D2j2 � a2 + 4 � jA1nC1j2 � jA2nC2j2 � b2 � 1CCA(152)where, 2a = �(A1nC1)� � (A2nC2)� ((A1nC1)� � (A2nC2))�; 2b = (B1=D1)� � (B2=D2) + ((B1=D1)� � (B2=D2))�



29This puts all the non-salar parameters into the numerator, and the denominators then ontain only salar terms;eqn (150) an then be resolved into the one-hand quaternion form by moving the usual left handed quaternions overto the r-h-s of the Ê fators. The �nal solution, (p; q), to the simultaneous equation system (145) is then,
p = 0BBBBBBBB� +(jC1nA1j2 � jD1=B1j2 � jC2nA2j2 � jD2=B2j2) � (C1nA1)� � ((C1nE1)=D1 � (C2nE2)=D2) � (D1=B1)�+(jC1nA1j2 � jD1=B1j2 � jC2nA2j2 � jD2=B2j2) � (C2nA2)� � ((C1nE1)=D1 � (C2nE2)=D2) � (D2=B2)�+2 � (jC2nA2j2 � b+ jD1=B1j2 � a) � (C1nA1)� � ((C1nE1)=D1 � (C2nE2)=D2) � (D2=B2)��2 � (jC1nA1j2 � b+ jD2=B2j2 � a) � (C2nA2)� � ((C1nE1)=D1 � (C2nE2)=D2) � (D1=B1)�� (jC1nA1j2 � jD1=B1j2 � jC2nA2j2 � jD2=B2j2)2+4 � (jC1nA1j2 � jD1=B1j2 + jC2nA2j2 � jD2=B2j2) � ab + 4 � jD1=B1j2 � jD2=B2j2 � a2 + 4 � jC1nA1j2 � jC2nA2j2 � b2 �

1CCCCCCCCA(153)where, 2a = �(C1nA1)� � (C2nA2)� ((C1nA1)� � (C2nA2))�; 2b = (D1=B1)� � (D2=B2) + ((D1=B1)� � (D2=B2))�and,
q = 0BBBBBBBB� +(jA1nC1j2 � jB1=D1j2 � jA2nC2j2 � jB2=D2j2) � (A1nC1)� � ((A1nE1)=B1 � (A2nE2)=B2) � (B1=D1)�+(jA1nC1j2 � jB1=D1j2 � jA2nC2j2 � jB2=D2j2) � (A2nC2)� � ((A1nE1)=B1 � (A2nE2)=B2) � (B2=D2)�+2 � (jA2nC2j2 � b+ jB1=D1j2 � a) � (A1nC1)� � ((A1nE1)=B1 � (A2nE2)=B2) � (B2=D2)��2 � (jA1nC1j2 � b+ jB2=D2j2 � a) � (A2nC2)� � ((A1nE1)=B1 � (A2nE2)=B2) � (B1=D1)�� (jA1nC1j2 � jB1=D1j2 � jA2nC2j2 � jB2=D2j2)2+4 � (jA1nC1j2 � jB1=D1j2 + jA2nC2j2 � jB2=D2j2) � ab + 4 � jB1=D1j2 � jB2=D2j2 � a2 + 4 � jA1nC1j2 � jA2nC2j2 � b2 �

1CCCCCCCCA(154)where, 2a = �(A1nC1)� � (A2nC2)� ((A1nC1)� � (A2nC2))�; 2b = (B1=D1)� � (B2=D2) + ((B1=D1)� � (B2=D2))�The solution to the linear system exists when the salar denominators are of non-vanishing values. The seond,\retangular" system (146), transforms into \square" two-hand;�h(A1; B1)m1 � p̂ + �h(C1; D1)n1 � q̂ = Ê1 (155)�h(A2; B2)m2 � p̂ + �h(C2; D2)n2 � q̂ = Ê2where, this notation, �h(Aj ; Bj)m, adds the seond subsripted index, AjkB0jk; k = 1; 2; : : : ;m; and the appropriatehand transform 0 marks, to form the usual bilinear hexpe expressions;�h(A1; B1)m1 = A11B011 +A12B012 + � � �A1m1B01m1�h(A2; B2)m2 = A21B021 +A22B022 + � � �A2m2B02m2 (156)�h(C1; D1)n1 = C11D011 + C12D012 + � � �C1n1D01n1�h(C2; D2)n2 = C11D011 + C12D012 + � � �C1n2D01n2To solve this system, we may hoose to multiply by the inverse, �h�1m , or the adjoint, �hym , both of whih we now knowhow to onstrut, and use these to redue the fators to salars; then, eliminate one or the other independent variableto �nd the solution. When the four determinant values are non-zero, i.e. det(�h(A1; B1)m1) 6= 0; det(�h(A2; B2)m2) 6=0; det(�h(C1; D1)n1) 6= 0; det(�h(C2; D2)m1) 6= 0; we may transform this system into;(�h(C1; D1)�1n1 �h(A1; B1)m1 � �h(C2; D2)�1n2 �h(A2; B2)m2) � p̂ = �h(C1; D1)�1n1 Ê1 � �h(C2; D2)�1n2 Ê2 (157)(�h(A1; B1)�1m1�h(C1; D1)n1 � �h(A2; B2)�1m2�h(C2; D2)n2) � q̂ = �h(A1; B1)�1m1Ê1 � �h(A2; B2)�1m2Ê2 (158)



30and re-write these equations,p̂ = �h(C1; D1)�1n1 Ê1 � �h(C2; D2)�1n2 Ê2` (�h(C1; D1)�1n1 �h(A1; B1)m1 � �h(C2; D2)�1n2 �h(A2; B2)m2) (159)q̂ = �h(A1; B1)�1m1Ê1 � �h(A2; B2)�1m2Ê2` (�h(A1; B1)�1m1�h(C1; D1)n1 � �h(A2; B2)�1m2�h(C2; D2)n2) (160)The denominators in these expressions for (p; q) are not salars, but general hexpe numbers; hene, the use of theusual ` in the denominator, to indiate division from the left in frational notation. When these hexpe numbers inthe denominator are invertible, we an obtain the solution to the retangular system.Now, �h(A1; B1)m1 , is an m1-term bilinear expression, and its inverse, �h(A1; B1)�1m1 , aording to our estab-lished formula (144), an be redued to have a minimum term ount of (2m31 � 3m21 + 4m1)=3 irreduiblequaternion terms; if this is greater than 16, then the ount an be redued further, but only by breaking thequaternions up into their omponents. This means that the produt, �h(A1; B1)�1m1�h(C1; D1)n1 , will have at leastn1 �(2m31�3m21+4m1)=3 quaternion terms in its bilinear form. So, the denominator in the formula for q̂ is an n-termbilinear hexpe number, �hn , where n = n1 � (2m31 � 3m21 + 4m1)=3 + n2 � (2m32 � 3m22 + 4m2)=3 . Similarly, thedenominator in the formula for p̂ is an n-term bilinear, with n = m1 �(2n31�3n21+4n1)=3 + m2 �(2n32�3n22+4n2)=3 .When these n-term bilinear inverses, �h�1n , in the denominators for (p; q), do not exist, there may be speial asesolutions, as in the ase in the linear equations in one variable. This method of approah an be extended to �ndsolutions to the general linear system of equations in N variables.Appliations and Examples.In [YT1℄, Tian[2�℄ disusses three equations ax � xb =  , ax � x�b =  , and x�ax = b in quaternions.We solve the �rst two to illustrate the two-hand approah; the third is quadrati, so beyond the sope of this paper.example 1 : ax� xb =  a; b; ; x 2 HRax� xb =  ! ax̂� b0x̂ = ̂ ! (a� b0)x̂ = ̂(a� b0)�R(a� b0)x̂ = (a� b0)�R̂ ! (a� � b0)(a� b0)x̂ = (a� � b0)̂(jaj2 � (a+ a�)b0 + b02)x̂ = (a� � b0)̂ (161)(jaj2 � (a+ a�)b0 + b02)�L(jaj2 � (a+ a�)b0 + b02)x̂ = (jaj2 � (a+ a�)b0 + b02)�L(a� � b0)̂(jaj2 � (a+ a�)b0� + (b0�)2)(jaj2 � (a+ a�)b0 + b02)x̂ = (jaj2 � (a+ a�)b0� + (b0�)2)(a� � b0)̂Simplifying the fators and rearranging,x̂ = 0� jbj2a� jaj2b0 + jaj2a� � jbj2b0� � ((a+ a�)� (b+ b�))a�b0�(jaj2 � jbj2)2 � (jaj2 + jbj2)(a+ a�)(b+ b�) + jbj2(a+ a�)2 + jaj2(b+ b�)2 1A ̂ (162)) x = jbj2a� jaj2b+ jaj2a�� jbj2b� � ((a+ a�)� (b+ b�))a�b�(jaj2 � jbj2)2 � (jaj2 + jbj2)(a+ a�)(b+ b�) + jbj2(a+ a�)2 + jaj2(b+ b�)2 (163)This result ould, of ourse, be obtained more diretly by using the eqn (54) formula. But, it is always usefulto see the same problem solved di�erent ways, espeially sine slightly di�erent expressions result from the variousalterations in method, and it often takes some e�ort to show that the variations are atually the same[10℄. In fat,
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31we previously solved this very equation in our \Quatro-Quaternion" paper [PJ3℄, the solution being reprodued inthis paper above in eqns (QQ-72) and (QQ-73). But, in [PJ3℄ we used the results from a rather lengthy methodto arrive at this general unique solution; we re-solve this above in eqns (51) and (52) in the developed method ofthis paper. Finally, here again, we exploit the fat that the 2-term problem an be solved by building up either ofthe onjugated ubi fators, (h�Rh)�Lh�R or (h�Lh)�Rh�L, on the l-h-s of the equation, to redue it to salar, todemonstrate this simpler approah for Tian's statement of the same problem. This method is speial, however, anddoes not generalize to the n-term; unlike the Gilgamesh Solution whih is general and solves this and the n-term also.example 2 : ax� x�b =  a; b; ; x 2 HRa x � x� b = �b�x + x�a� = � ! a x̂ � b0 x̂� = ̂�b�x̂ + a0�x̂� = ̂� ! jaj2b0�a x̂ � jaj2b0�b0 x̂� = jaj2b0�̂�jbj2a0b�x̂ + jbj2a0a0�x̂� = jbj2a0̂� (164)We treat this as a problem in two variables (x ; x� ), and onjugate the given equation to obtain the seond equation,in order to form a pair of simultaneous equations in the two variables. Then, we solve the linear system.(jaj2ab0� � jbj2b�a0)x̂ = (jaj2b0�̂+ jbj2a0̂�) (165)(jaj2ab0� � jbj2b�a0)�R(jaj2ab0� � jbj2b�a0)x̂ = (jaj2ab0� � jbj2b�a0)�R(jaj2b0�̂+ jbj2a0̂�) (166)(jaj2a�b0� � jbj2ba0)(jaj2ab0� � jbj2b�a0)x̂ = (jaj2a�b0� � jbj2ba0)(jaj2b0�̂+ jbj2a0̂�) (167)(+jaj6b0�b0� � jaj2jbj2a�b�b0�a0 � jaj2jbj2baa0b0� + jbj6a0a0)x̂ = (jaj2a�b0� � jbj2ba0)(jaj2b0�̂+ jbj2a0̂�) (168)multiplying both sides by, (jaj6b0�b0� � jaj2jbj2a�b�b0�a0 � jaj2jbj2baa0b0� + jbj6a0a0)�L , symplifying and rearranging,
x̂ = 0BBBBBB� jaj6a�b0 � jaj4bb0b0a0 � jaj2jbj2a�b�a�a0�+jbj4a�a0�b0a0 � jaj4bb0a0�b0� + jaj2jbj2babb0+jbj4a�a0�a0�b0� � jbj6ba0�jaj2jbj2(jaj2 � jbj2)2((jaj2 + jbj2)2 � ((ab) + (ab)�)2) 1CCCCCCA (jaj2b0�̂+ jbj2a0̂�) (169)

) x = 0BBBBBB� jaj6jbj2a�( jaj2+ �ab )� jaj4b( jaj2b� + jbj2�a )abb� jaj4jbj2a�b�a�( b�a� + jbj2� )+jbj4a�( jaj2b� + jbj2�a )aba� � jaj4b( jaj2b� + jbj2�a )b�a�b+ jaj2jbj4bab( jaj2+ �ab )+jbj4a�( jaj2b� + jbj2�a )b�a�a� � jbj6jaj2b( b�a� + jbj2� )jaj2jbj2(jaj2 � jbj2)2( (jaj2 + jbj2)2 � ((ab) + (ab)�)2 ) 1CCCCCCA (170)With some more re-arranging this somewhat raw formula is further redued to,
) x = 0BBB� (jaj2 + jbj2)( jaj2a�+ a��ab+ bb�a� + jbj2b� )�((ab) + (ab)�)( jbj2a�� + b�ab+ a�b�a� + jaj2b )(jaj2 � jbj2)( (jaj2 + jbj2)2 � ((ab) + (ab)�)2 ) 1CCCA (171)The above eqn (171) is the general unique solution that exists when, (jaj2�jbj2)((jaj2+ jbj2)2� ((ab)+(ab)�)2) 6= 0.The reader is invited to verify for himself, by substituting this formula for x bak into the original equation,ax � x�b =  , that this is indeed \a" solution to the given problem. On page 359 of [YT1℄ Tian gives thesolution to this problem in his eqn (3.35), i.e. when jaj 6= jbj, in matrix form, using the omponents of the quater-nions, and then delares that it is an unsolved problem how to write this solution in a formula omposed by a, b, and .



32We propose that (171) is the general formula in the quaternion symbols a, b, and , and not just \a" solution tothe problem. We an show that the \speial ases" given by Tian an be derived from this one general unique solution.speial ase 1: Condition, jaj 6= jbj and ab� = �ab. ) x = (jaj2 � jbj2)�1(a�+ b�)speial ase 2: Condition, a; b;2 H , a 6= 0; b = ka; 1 6= k 2 R. ) x = 1(1� k2)jaj2 (a�+ ka�)speial ase 3: Condition, a; b 2 H , jaj2 6= jbj2, with,  2 R. ) x = (jaj2 � jbj2)�1(a� + b)speial ase 4: Condition, a; b 2 H , with, jaj2 6= jbj2, and,  = ab. ) x = (jaj2 � jbj2)�1(jbj2a� + jaj2b)In the �rst of Tian's speial ases, the ondition is, jaj 6= jbj and ab� = �ab. Conjugating this latter ondition, wehave, b�a� = b�a�, also. Sine, therefore, � ommutes with ab, and  ommutes with b�a�, we an move � and to the right of all terms in the numerator of (171) and we obtain;) x = 0BBB� (jaj2 + jbj2)( jaj2a�+ jaj2b� + jbj2a�+ jbj2b� )�((ab) + (ab)�)( bb�a�� + bab� + a�b�a�+ a�ab )(jaj2 � jbj2)( (jaj2 + jbj2)2 � ((ab) + (ab)�)2 ) 1CCCA (172)
= 0BBB� (jaj2 + jbj2)2(a�+ b�)�((ab) + (ab)�)( b(b�a� + ab)� + a�(b�a� + ab) )(jaj2 � jbj2)( (jaj2 + jbj2)2 � ((ab) + (ab)�)2 ) 1CCCA (173)

= 0� ((jaj2 + jbj2)2 � ((ab) + (ab)�)2)(a�+ b�)(jaj2 � jbj2)( (jaj2 + jbj2)2 � ((ab) + (ab)�)2 ) 1A = a�+ b�jaj2 � jbj2 q.e.d. (174)In the seond speial ase, Tian assumes the onditions from the �rst speial ase, although this is not stated learlyin his paper, so that, the previous, ab� = �ab, being assumed, implies, aa� = �aa, here also. Then, the simplesubstitution of b = ka, in eqn (174), leads diretly to that unique solution;x = a�+ b�jaj2 � jbj2 = a�+ ka�jaj2 � jkaj2 = a�+ ka�(1� k2)jaj2 q.e.d (175)In the third speial ase, the inhomogenous parameter, , is a real valued variable, so that, again, the ommutationrelation, ab� = �ab, holds, and we obtain (172)� (174), only this time, � = , so we may redue one again;x = a�+ b�jaj2 � jbj2 = a�+ bjaj2 � jbj2 = (a� + b)jaj2 � jbj2 q.e.d (176)In Tian's �nal speial ase, sine,  = ab, we have, ab(ab)� = abb�a� = ajbj2a� jaj2jbj2 = (ab)�ab, so again, theommutation ondition, ab� = �ab, is being assumed, and Tian's last three speial ases are just sub-ases of his�rst speial ase, so that substituting  = ab in (174) yields the last unique solution;x = a�+ b�jaj2 � jbj2 = a�ab+ b(ab)�jaj2 � jbj2 = (jaj2b+ jbj2a�)jaj2 � jbj2 q.e.d (177)On page 354 of [YT1℄, in disussing his equation (3.6), [�(a) � �(b)L℄x̂ = 0, Tian gives the formula for thedeterminant, det[�(a) � �(b)L℄ = (jaj2 � jbj2)ja� + bj2 . If we expand the fator, ja� + bj2 = (a� + b)�(a� + b) =(jaj2 + jbj2 + (ab) + (ab)�), and give the denominator in eqn (171) the label �, then we an ompare these divisors;det[�(a)� �(b)L℄ = (jaj2 � jbj2)(jaj2 + jbj2 + (ab) + (ab)�) (178)� = (jaj2 � jbj2)(jaj2 + jbj2 + (ab) + (ab)�)(jaj2 + jbj2 � (ab)� (ab)�) (179)



33We have an extra fator, ((jaj2 + jbj2)� ((ab) + (ab)�)), in the divisor, whih allows the numerator to be expressed inhigher order terms; instead of p 4, the formula (171) is expressed in p 6 terms, but these `parameters' an be reduedto p 4, by breaking the inhomogenous quaternion parameter  into its salar and vetor parts,  = S() +V (). Thisallow us to get rid of the extra fator in the divisor, and write,x = 0BB� +((jaj2 + jbj2) + ((ab) + (ab)�))(a� + b)S()+(jaj2a� � jbj2b� ((ab) + (ab)�)(b� a�))V ()� a�V ()ab+ bV ()b�a�(jaj2 � jbj2)ja� + bj2 1CCA (180)Of ourse, one we have broken up the  quaternion to enable us to ontinue the redution of the expression form,and have found the ultimate solution, we an always \be lever" and put bak in the whole quaternion , by usingthe simple identities, S() = (+ �)=2, and, V () = (� �)=2, if we really insist on seeing the pure form with wholequaternions, and so re-write the (171) solution;x = 0BB� +((jaj2 + jbj2) + ((ab) + (ab)�))(a� + b) � 12 � (+ �)+(jaj2a� � jbj2b� ((ab) + (ab)�)(b� a�)) � 12 � (� �)� a� � 12 � (� �) � ab+ b � 12 � (� �) � b�a�(jaj2 � jbj2)ja� + bj2 1CCA (181)or some variation thereof. III. CONCLUSIONS.The above results indiate that hand transformation, A ! A0, may be as important as onjugation, A ! A�, inempowering the alulus of quaternions to solve problems, and is probably a neessary tool required for working withquaternions. Conjugation is often thought of as a kind of hand transformation, given that, when the units, i; j; k;obey the right hand rule, ij = +k, their onjugates, i�; j�; k�, obey the left hand rule, i�j� = �k�, just like our lefthand units, i 0j 0 = �k 0. However, as pointed out in our previous paper[1�℄ [PJ2℄, there is a speial distinguishedleft handed basis[11℄ orresponding to a given right handed basis, separate and distint from the onjugate basis,that plays the role of true left hand. The di�erene is most learly understood when onsidering the transformationsindued by these numbers when they play the role of operators. Where a unit quaternion, i = iR, produes a rotation,the onjugate quaternion, i� = i�R, reverses that operation, but while the left hand quaternion, i0 = iL, also reversesthe very same rotation, it goes further and indues a reetion in the plane perpendiular to the axis of rotation.In physial jargon, the onjugate � is linked to parity, whih is a omplete three axis spae inversion, while thehand transform 0 is linked to hirality, whih is a plane mirror single axis inversion. The net result of i�i = i�RiR,is just the identity transformation, while the net result of i0i = iLiR, is a reetion in the jk-plane[12℄. Therefore,although the idea of the onjugate inludes onsiderations of left-handedness within the alulus of quaternionsonstruted from a right hand basis alone, it is really inomplete, and a distint left hand basis needs to be inludedto omplete both the geometri piture and for manipulation of expressions to solve purely algebrai problems.Now, the onjugate ommutes with the original parameter, Q�Q = QQ�, and the hand transform also ommutes,Q0Q = QQ0. But, while the onjugate only generally ommutes with the original quaternion it transformed from,and losely related numbers, i.e. typially Q�P 6= PQ�, the hand transform will ommute with all quaternionsin the original algebra, Q0P = PQ0; 8 P 2 HR . In this way, if we an think of the onjugate as a kind of handtransform, then the hand transform is a kind of onjugate, at least in respet to permutation of fators, exept thetrue onjugate is restrited to loal ommutes, Q�S = SQ�; S � fP j P = �Q + �; �; � 2 Rg � HR , while thehand transform is like a global onjugate, Q0HR = HRQ0, that ommutes with all parameters in the original algebra.Thinking of these two marks, � and 0 , as loal and global operators, respetively, helps to �x ideas on whywe need two separate and distint types of hand transformation operators|that both seem to produe left handednumbers|to omplete the alulus of quaternions: the loal onjugate helps to invert individual quaternions, andthe global onjugate failitates inversion of linear expressions of those quaternions, enabling us to solve linear equations.singular solutions. For the linear problems desribed in this paper, we have given only the \general solutions."These are the solutions obtained when the salar denominator in the formulas for h�1 is non-zero, so that thisinverse exists. As briey disussed in[1�℄ ([PJ2℄, pg. 27), there may be solutions that exist for the singular problems
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34where h�1 itself does not exist, but in this paper we have not given any further treatment of the singular solutions.T (q) = A1qB1 +A2qB2 + � � �+AnqBn (182)Now every linear transformation, T : (v0; v1; v2; v3) 7! (w0; w1; w2; w3), in real valued 4-dimensional spae, an berepresented by a 4� 4 real matrix, T 2M(R; 4), and every suh matrix an be written as an hexpe number, h 2 Xn.But, sine every hexpe number, h, an also be written as the sum of pair produts, h = A1B02 + � � � + AnB0n, withone right and one left handed quaternion, Ak 2 HR ; B0k 2 H L , in eah pair, this means that the linear transformationan be written{(182){as the sum of quaternion terms, AkqBk, using the right hand quaternion algebra, i.e.Ak; Bk; q 2 HR . The four real variable parameters, vk ; k = 0; 1; 2; 3, are bundled up and tossed into a quaternion,qk = vk ; and the general linear transformation is treated as a sequene of operations on quaternions, using bothmultipliation from the left and from the right simultaneously, within Hamilton's right handed algebra. The operatorating to the left, qB � q  B , introdues left-handed ations in the transformation operation|while stillworking within this set of right handed parameters|and these left-ations are then onverted into operator to theright ations, B0q̂ � B0 ! q̂ , using left-handed quaternions instead. This enables us to deal with both left andright ating operators within the same expressions, rather than the usual onvention that tends to fous on just aone sided algebra. A general linear transformation is then seen as a set of simultaneous \ left and right " ations ona entral objet, whih is the subjet of the transformation. This mimis known proesses in physial phenomena|arotation is produed by a simultaneous ation of two equal but opposite fores|\ating on opposite sides"|of aentral objet, whih is the subjet of the torque. Many proesses in the physial world an be interpreted by atransformation produed with two opposing fores|even a stationary objet, by Netwton's �rst law, remains put,beause ation and reation are equal and opposite. Now, when the inverse, h�1, exists, this orresponds to theexistene of the inverse matrix, T�1, in M(R; 4), and these are the reversible linear transformations, GL(R; 4), knownas aÆne transformations. The \general solutions" desribed in this paper, therefore, are useful for the study of thefour dimensional aÆne geometry, and Singular solutions are only required for non-aÆne transformations.homogeneous solutions. Speial arbitrary solutions may also exist when C = 0, in (4), i.e. for the orrespondinghomogeneous problem, if the problem is singular, and these need to be added to the singular solution for C 6= 0. Oneexample is given in[1�℄ ([PJ2℄, pg. 27) as part of the singular solution disussed there. If the homogenous solution isqH , and the singular solution is qS , then the \omplete solution" to the problem, in this ase, is then: q = qS + qH .omment. In this paper, we have generally avoided making referene to the omponents of a quaternion, to it'spartiular basis elements, or even to the salar and vetor parts, in the proess of manipulation of expressions[13℄. Weonly illustrate the salar + vetor notational form in some results for omparison [Pg:6℄. Hamilton thought [1�℄ it wasa de�ieny [14℄ in the method whenever one had to break the quaternion down into its omponents 1; i; j; k, or makereferene to these omponents in the working out of solutions. (We still have to do this to treat the singular solutions,for example.) But, he felt omfortable splitting the quaternion up into its salar and vetor parts, q = Sq+V q, an ideathat was obviously superior to him beause it made no spei� referene to spatial oordinates (Whih parallels ouridea of spae as homogeneous|no unique origin of oordinates|and isotropi|looking the same in all diretions.)However, this very deomposition aused many, like Heaviside and Gibbs, to feel that quaternions were arti�ial andomposed of the unnatural union of two separate algebras: an algebra of salars and an algebra of vetors. They ouldnot onieve of the quaternion as a neessarily omplete objet in its own right. So, they eventually deonstrutedHamilton's alulus to separate the parts they felt should be kept distint for vetor algebra. This has led thespaetime algebra to evolve down a partiular path, ulminating in modern Cli�ord algebra, where one aspet ofgeometri transformations is overly emphasized{the rotation{while another important aspet{the salings{are wholeydepreiated, in the mathematial desription of nature's art. The two-hand quaternion algebra restors the balanebetween the rotation and the saling transformations, in algebrai geometry, sine it represents the omplete lineartransformation that desribes all of aÆne geometry, without negleting, nor overly emphasizing, any partiular aspet!We now take the position that it is sometimes also a de�ieny in the method whenever one has to break thequaternion up into its salar and vetor parts, and write q = Sq + V q , to e�et a solution. And onsider itsuperior when we an solve problems using q and q 0 instead, where 0 is hand transformation, along withthe usual q and q� , where � is onjugation, sine this treats the quaternion as a wholey omplete entity inits own right. The right and left onjugate operators, ( � )�R and ( � )�L , are seen only as shorthand notation,for what is really the appliation of the normal onjugate, ( � )� , within bilinear expressions, useful in theonstrution of alternate multipliative fators|i.e. instead of writing out those fators with expliit expressionsusing the normal � onjugate on a term by term basis|and are not to be thought of as new fundamental opera-tors adding something more than the normal onjugate itself to the understanding of the theory of quaternion alulus.
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35three term and quarks. Three term linear equations (3) ould prove useful in modeling ertain physialphenomena, like elementary partiles alled quarks, where the underlying struture inherent in the physial proessis thought to onsist of a triplet. There is something speial about this linear problem in quaternions, sine it seemsto be the highest number of terms solvable with the algebrai method we started out with, before we have to splitthe onjugate ( � )� into right ( � )�R and left ( � )�L parts, and start ombining di�erent onjugated ubes, in orderto e�et solutions. The solutions beome intriately more ompliated for four terms and higher, and our \simplermethod" introdued to solve these higher problems|whih makes them tratable|is atually more ompliated forthree term and less, and so the label \simpler method" appears to be a misnomer when applied there. But, in fat,our initial method required guessing the fators to be applied to redue the l.h.s to salar values, and that is, indeed,more ompliated, espeially when we have to start ombining di�erent guesses to �nd the right onstrution. It isthen simpler to use the diret method made available through the quaternion expansion of the adjoint matrix to walka known and sure path to the solution, for even though more algebrai steps are involved, there is no guesswork. Thefour term linear equation is also somewhat speial, in that it is the last to introdue new types of expression bloks inthe redued formulas for the inverse, h�1 , and the solution, q. We an immediately write down the redued solutionsto the n-term problem, by simply inspeting the 4-term formula and extending the form of the expression bloksfound there to n-indiies by following the pattern of the terms. Beyond the \three" and \four" term, however, thefurther n-term problems seem to add nothing essentially new, apart from extending the index ount in the solution.tensor produt algebras. Our algebra introdues the left hand quaternions, the onept of hand transfor-mation, the idea of the partial onjugates, ( � )�R and ( � )�L, and various onjugated squares and onjugated ubes,to evolve a method for solving linear problems. However, beause of isomorphism, it is quite feasible to eret adouble right hand algebra instead, with partial onjugates ( � )�R1 and ( � )�R2 , and develop a parallel method forsolving these linear problems by enhaning the algebra of the tensor produt H 
 H . In suh a ase, the oneptof hand transformation would appear to be non-essential, being replaed by some other way of reognising theonversion between di�ering right hands instead. But, the double right hand algebra seems non-intuitive to us, sineit urrently appears to lak the power to ontribute to physial insights, and we have therefore hosen the morebalaned two-hand H 0 
 H instead, beause of this very appeal in antiipated appliations to physial problems.However, adapting these new methods to the double right hand H 
 H , ould then enable the development of similaronstrutions and methods of approah in solving problems for even higher order tensor produt algebras, suh asthird order, H 3 � H 
 H 
 H , extending to H n � H 
 H 
 � � � 
 H . So, this obvious alternative may also merit someonsideration.quaternion matrix expansions. As shown in the appendix , we an onstrut a \ quaternion expansion "for the adjoint and determinant of any 4 � 4 real matrix, and thus e�etively arry out matrix operations usingquaternion omputations. This is not a partiularly eÆient way of doing matrix algebra, espeially when the realmatrix oeÆients, auv , are given. But, it does allow us to work out matrix algebra entirely in quaternions, withoutreferening those matrix omponents, when an alternate quaternion representation is given|either the bilinearform, or hexpe basis form. The quaternion expansions given herein are independent of the partiular 16-d hexpebasis hosen to represent a matrix, and so are more general formulas than those that make spei� referene toour partiular hexpentaquaternion basis matriies established in our previous paper [PJ2℄. The equivalene of thetwo-hand quaternion to matrix algebra is more important in the establishment of methods of solutions to purelyquaternion problems, where we seek to rekon with the non-abelian parameters without breaking the quaternion outinto its omponents. Here we use the fat that the two-hand quaternion algebra is based on solid foundations, witha large body of established work behind it, in the orresponding matrix algebra, so that we an be on�dent in ournew results without alot of additional theorem proving being �rst required. We use this, for example, to establishthat the solution we have found inludes all possible general unique solutions, and to alloate the variety of speialase solutions|that generally otherwize populate quaternion problems|to the speial ategory of the singular ase.The new approah learly leads us easily to the solution of previously unsolved quaternion problems, spei�ally theproblem mentioned by Tian of how to ompose a formula in quaternions for the unique solutions that are alreadyknown to exist, whih problems remained unsolved simply beause of the shear diÆulty of the task to establishertain solutions with omponents �rst, and then seek to gather those omponents bak into the quaternions fromwhih they ame, in order to view the results in whole quaternion parameter format.



36A. APPENDIXonjugated ubes.In basis omponent format, the inverse of a general hexpe number, h 2 Xn, is given by, h�1 2 Xn, where,h = h0 �E + hM1 � IM + hM2 � JM + hM3 �KM+ hR1 � IR + hL1 � IL + hA1 � IA + hZ1 � IZ+ hR2 � JR + hL2 � JL + hA2 � JA + hZ2 � IZ+ hR3 �KR + hL3 �KL + hA3 �KA + hZ3 �KZ h�1 = (w0 �E + wM1 � IM + wM2 � JM + wM3 �KM+ wR1 � IR + wL1 � IL + wA1 � IA + wZ1 � IZ+ wR2 � JR + wL2 � JL + wA2 � JA + wZ2 � IZ+ wR3 �KR + wL3 �KL + wA3 �KA + wZ3 �KZ)=d(A-1)d = h0w0 + hM1wM1 + hM2wM2 + hM3wM3 + hA1wA1 + hA2wA2 + hA3wA3 + hZ1wZ1 + hZ2wZ2 + hZ3wZ3 (A-2)� hR1wR1 � hR2wR2 � hR3wR3 � hL1wL1 � hL2wL2 � hL3wL3The formulas for the weights, wk 2 R, are given previously in [1�℄ (table t. 3-IV ) of [PJ2℄, and are ubi in theoeÆients of h, i.e. wk = O(h3). So, when h is written in two-hand bilinear form, i.e h = A1B01 + A2B02 + � � � +AnB0n; Ak 2 H R ; B0k 2 H L , the weights are then simultaneously ubi in the right and left handed quaternion fators,wk = O(A3B3). This is always the ase, regardless of how many terms n omprise the bilinear expression. We neverneed to go higher than the ubi to onstrut the orresponding inverse formula for the bilinear hexpe number. Thedenominator is a salar of quarti order in the oeÆients of h, i.e. d = O(h4), and thus this salar is bi-quarti in theorresponding right and left hand quaternions, d = O(A4B4). Hene, knowing this, we then seek to write the inversein the bi-ubi form, with numerator terms A��A�A�� B0�� B0�B0�� et.., and some salar denominator � 2 R, and so write,h�1 = PA��A�A�� B0�� B0�B0��� ; A� 2 HR ; B0� 2 H L ; � 2 R: (A-3)instead of expressing the inverse in the basis omponents. To obtain this formula, we must onstrut it fromvariations of the onjugated ubes, e.g. h�Sh�Th�U , where, the ( � )�S , ( � )�T , and ( � )�U , are onjugations takenfrom the three possible onjugates, ( � )�R , ( � )�L , and ( � )� , i.e. the right onjugate, left onjugate, and regularongugate, or the unonjugated h taken as a andidate fator. In basis omponent terms, these onjugates arede�ned by; h = h0 + hR1i+ hR2j + hR3k + hL1i 0 + hL2j 0 + hL3k 0 (A-4)+ hM1ii 0 + hM2jj 0 + hM3kk 0 + hA1jk 0 + hA2ki 0 + hA3ij 0 + hZ1kj 0 + hZ2ik 0 + hZ3ji 0h�R = h0 � hR1i� hR2j � hR3k + hL1i 0 + hL2j 0 + hL3k 0 (A-5)� hM1ii 0 � hM2jj 0 � hM3kk 0 � hA1jk 0 � hA2ki 0 � hA3ij 0 � hZ1kj 0 � hZ2ik 0 � hZ3ji 0h�L = h0 + hR1i+ hR2j + hR3k � hL1i 0 � hL2j 0 � hL3k 0 (A-6)� hM1ii 0 � hM2jj 0 � hM3kk 0 � hA1jk 0 � hA2ki 0 � hA3ij 0 � hZ1kj 0 � hZ2ik 0 � hZ3ji 0h� = h0 � hR1i� hR2j � hR3k � hL1i 0 � hL2j 0 � hL3k 0 (A-7)+ hM1ii 0 + hM2jj 0 + hM3kk 0 + hA1jk 0 + hA2ki 0 + hA3ij 0 + hZ1kj 0 + hZ2ik 0 + hZ3ji 0where we have used the alternate representation of the basis elements, derived from the right hand quaternion basisi; j;k, by using hand transformation 0 and right left binary produts, IM = ii 0; et.. sine this makes it easier tosee, at a glane, why the right onjugate also onjugates the m-a-z numbers, but the regular onjugate does not ipthose signs. The regular onjugate ( � )� ats on both right handed and left handed omponents simultaneously, andis therefore equivalent to, h� = (h�R)�L = (h�L)�R (A-8)so, when the one hand onjugate ips the sign on m-a-z, the other hand onjugate ips it bak, resulting in unhangedsign for these basis omponents. When written in bilinear form, the onjugates of h are;h = A1B01 +A2B02 + � � �+AnB0n (A-9)h�R = A�1B01 +A�2B02 + � � �+A�nB0n (A-10)h�L = A1B0�1 +A2B0�2 + � � �+AnB0�n (A-11)h� = A�1B0�1 +A�2B0�2 + � � �+A�nB0�n (A-12)
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37In a previous paper [PJ3℄ we also introdued the operators, R( � ) and L( � ), that extrat the right pure quaternionand left pure quaternion of an hexpe number, respetively. This intentionally imitates Hamilton's use of the operatorV ( � ) to extrat the vetor part{i.e. the pure quaternion{of a one hand quaternion. With our notation, we observe,h+ h�L = 2S(h) + 2R(h) (A-13)h+ h�R = 2S(h) + 2L(h) (A-14)h+ h� = 2S(h) + 2M(h) + 2A(h) + 2Z(h) = 2h� 2R(h)� 2L(h) (A-15)where, S( � ), is the usual salar part operator from Hamilton, and we now introdue, M( � ), A( � ), and Z( � ), for thepure meta, alpha, and zeta, parts, i.e. the m-a-z, of the two-hand quaternion.(h+ h�L)� = h� + (h�L)� = h� + h�R = (h�L + h)�R = 2S(h)� 2R(h) (A-16)(h+ h�R)� = h� + (h�R)� = h� + h�L = (h�R + h)�L = 2S(h)� 2L(h) (A-17)(h+ h�L) + (h+ h�L)� = h+ h� + h�L + h�R = 4S(h) (A-18)That is, the average of the four onjugated states of h is its salar omponent S(h), and we an use this to extratthe salar part of any hexpe number. Similarily, we an extrat other parts of the two-hand quaternion,S(h) = (h+ h� + h�R + h�L)=4 (A-19)R(h) = (h� h� � h�R + h�L)=4 (A-20)L(h) = (h� h� + h�R � h�L)=4 (A-21)M(h) +A(h) + Z(h) = (h+ h� � h�R � h�L)=4 (A-22)Conjugated Squares. The following table gives the various possible onjugations of the square forms, � h2 , we �nd,hh (h�Lh)�R h�Rh�R :(h�Rh�)�R(hh�)�R h�Lh�L :(h�h�R)�R(hh)�R (h�h)�R :(h�Lh�)�Rhh�R (hh�R)�L h�Rh�L :(h�h�L)�Rh�Rh (h�Rh)�L h�Lh�R(hh)�L (hh�L)�L h�Rh�hh�L (h�Lh)�L h�h�R (h�Rh�R)�Lh�Lh :(hh�)�L h�Lh� (h�Lh�L)�L(hh)� :(h�h)�L h�h�L :(h�h�)�Lhh� (h�Rh�L)�Lh�h :(h�Rh�R)�R (h�Lh�R)�L:(h�Lh�L)�R :(h�Rh�)�L(hh�R)�R :(h�h�)�R :(h�h�R)�L(h�Rh)�R :(h�Rh�L)�R :(h�Lh�)�L(hh�L)�R :(h�Lh�R)�R :(h�h�L)�LThese are the zero, single, double, and triple onjugated squares. All other onjugated squares redue to oneof these. Some of these are not unique, and are equivalent to another in the same table, but the equivaleneis non-obvious. For example, (h�Lh�R)� , is a triple onjugated square not inluded in the table, beause it'sobvious that, (h�Lh�R)� = (h�R)�(h�L)� = h�Lh�R , whih is a double onjugated square that is alreadyinluded. The regular onjugate obeys the rule, (gh)� = h�g� , whih is presumed familiar to the reader; however,partial onjugates do not, (gh)�R 6= h�Rg�R, and, (gh)�L 6= h�Lg�L, in general, for, g; h 2 Xn. Less obvious,is that, (h�h�)�R = ((hh)�)�R = (hh)�L , so both are inluded; one being marked by a preeeding dot \."to indiate that it is a dupliate of another table element. Similarily, (h�h)�L = ((h�h)�)�L = (h�h)�R , and,(h�Lh)�L = ((h�Lh)�)�R = (h�h�R)�R , et. . . There are 32 unique onjugated squares in this table.Conjugated Cubes. The following are a few useful onjugated ube forms, � h3 , whih we express in terms oftheir basis omponents, using the weights, wk , from the known inverse, h�1 , to illustrate where they agree withthat inverse's numerator, and where they di�er. The goal is to �nd those ombinations of onjugated ubes that anonstrut the numerator for h�1, sine this will reveal to us the sequene of onjugations and arithmeti operationsrequired to transform the l-h-s of a general linear problem into a salar value, enabling us to invert these equations.



38(h�Rh)�Lh�R =+1 � ( w0 + 8(+hM1hM2hM3 + hA1hA2hA3 + hZ1hZ2hZ3 � hM1hA1hZ1 � hM2hA2hZ2 � hM3hA3hZ3) )+IR � ( wR1 + 8(+hL1hM2hM3 + hL2hA1hA2 + hL3hZ1hZ3 � hL1hA1hZ1 � hL2hM3hZ3 � hL3hM2hA2) )+JR � ( wR2 + 8(+hL1hZ1hZ2 + hL2hM1hM3 + hL3hA2hA3 � hL1hM3hA3 � hL2hA2hZ2 � hL3hM1hZ1) )+KR � ( wR3 + 8(+hL1hA1hA3 + hL2hZ2hZ3 + hL3hM1hM2 � hL1hM2hZ2 � hL2hM1hA1 � hL3hA3hZ3) )+IL � wL1+JL � wL2+KL � wL3+ IM � wM1 (C-1)+JM � wM2+KM � wM3+IA � wA1+JA � wA2+KA � wA3+IZ � wZ1+JZ � wZ2+KZ � wZ3(h�Lh)�Rh�L =+1 � ( w0 + 8(+hM1hM2hM3 + hA1hA2hA3 + hZ1hZ2hZ3 � hM1hA1hZ1 � hM2hA2hZ2 � hM3hA3hZ3) )+IR � wR1+JR � wR2+KR � wR3+IL � ( wL1 + 8(+hR1hM2hM3 + hR2hZ1hZ2 + hR3hA1hA3 � hR1hA1hZ1 � hR2hM3hA3 � hR3hM2hZ2) )+JL � ( wL2 + 8(+hR1hA1hA2 + hR2hM1hM3 + hR3hZ2hZ3 � hR1hM3hZ3 � hR2hA2hZ2 � hR3hM1hA1) )+KL � ( wL3 + 8(+hR1hZ1hZ3 + hR2hA2hA3 + hR3hM1hM2 � hR1hM2hA2 � hR2hM1hZ1 � hR3hA3hZ3) )+ IM � wM1 (C-2)+JM � wM2+KM � wM3+IA � wA1+JA � wA2+KA � wA3+IZ � wZ1+JZ � wZ2+KZ � wZ3These are the partiular onjugated ubes that eah independently solve the \one term" and \two term" linearproblems. Many omponents happen to be idential with the h�1 numerator, but not all. Some omponents have\ extensions ", whih are|in these two ubes|expressions that are of the form +8( � � � ) shown. These extensionshappen to evaluate to zero when the hexpe number is two term or less, i.e h = A1B01, or, h = (A1B01 + A2B02). But, forthree term, and higher bilinear h forms, the extensions ontribute a non-vanishing value, so we annot simply usethese onjugated ubes for the inverse's numerator as shown in (102). We an, however, extrat the mathing partsof these ubes and ombine them. If we let, h�1 = �(w)=�, where �(w) is the required numerator, and, � 2 R, then;L((h�Rh)�Lh�R) = +wL1IL + wL2JL +wL3KL (A-23)R((h�Lh)�Rh�L) = +wR1IR +wR2JR + wR3KR (A-24)(h�Rh)�Lh�R � S((h�Rh)�Lh�R) �R((h�Rh)�Lh�R) = (A-25)+ wL1IL +wL2JL +wL3KL +wM1IM + wM2JM + wM3KM + wA1IA + wA2JA + wA3KA +wZ1IZ + wZ2JZ + wZ3KZ(h�Lh)�Rh�L � S((h�Lh)�Rh�L)� L((h�Lh)�Rh�L) = (A-26)+ wR1IR +wR2JR +wR3KR + wM1IM + wM2JM + wM3KM + wA1IA + wA2JA +wA3KA +wZ1IZ + wZ2JZ + wZ3KZ



39So, by ombining just these two ubes, we obtain an exat math to the vetor part of the numerator, �(w) = �h�1 .�h�1 � S(�h�1) = (h�Rh)�Lh�R � S((h�Rh)�Lh�R)�R((h�Rh)�Lh�R) +R((h�Lh)�Rh�L) (A-27)�h�1 � S(�h�1) = (h�Lh)�Rh�L � S((h�Lh)�Rh�L)� L((h�Lh)�Rh�L) + L((h�Rh)�Lh�R) (A-28)There are two ways to do this, starting with either ube, (h�Rh)�Lh�R or (h�Lh)�Rh�L, extrating the omponentsthat di�er beause of extensions, and inserting the orresponding mathing parts from the omplementary ube,using the operators, R( � ); L( � ), and S( � ). The problem is that we an't extrat the w0, whih is the salar part of�h�1, using just these two ubes, sine the ubes have the same extension term on their salar omponent. In fat,all triple onjugated ubes, onstruted with the pair, ( � )�R and ( � )�L , of partial onjugates, have idential salarvalues, and ontain the very same extension term again. We need to onsider double onjugated ubes, like h�Rhh�L,for example, to obtain a di�erent salar omponent extension term, so that we an onstrut an arithmeti expressionthat e�etively isolates and extrats the w0. This ould also be done with a triple onjugated ube, where the regularonjugate ( � )� is one of the three onjugates, e.g. (h�Rhh�L)� = h�Lh�h�R . So, this latter will also suÆe.h�Rhh�L =+1 � ( w0 � 4(+hM1hM2hM3 + hA1hA2hA3 + hZ1hZ2hZ3 � hM1hA1hZ1 � hM2hA2hZ2 � hM3hA3hZ3) )+IR � ( �wR1 � 4(+hL1hM2hM3 + hL2hA1hA2 + hL3hZ1hZ3 � hL1hA1hZ1 � hL2hM3hZ3 � hL3hM2hA2) )+JR � ( �wR2 � 4(+hL1hZ1hZ2 + hL2hM1hM3 + hL3hA2hA3 � hL1hM3hA3 � hL2hA2hZ2 � hL3hM1hZ1) )+KR � ( �wR3 � 4(+hL1hA1hA3 + hL2hZ2hZ3 + hL3hM1hM2 � hL1hM2hZ2 � hL2hM1hA1 � hL3hA3hZ3) )+IL � ( �wL1 � 4(+hR1hM2hM3 + hR2hZ1hZ2 + hR3hA1hA3 � hR1hA1hZ1 � hR2hM3hA3 � hR3hM2hZ2) )+JL � ( �wL2 � 4(+hR1hA1hA2 + hR2hM1hM3 + hR3hZ2hZ3 � hR1hM3hZ3 � hR2hA2hZ2 � hR3hM1hA1) )+KL � ( �wL3 � 4(+hR1hZ1hZ3 + hR2hA2hA3 + hR3hM1hM2 � hR1hM2hA2 � hR2hM1hZ1 � hR3hA3hZ3) )+ IM � wM1 � � � (C-3)+JM � wM2 � � �+KM � wM3 � � �+IA � wA1 � � �+JA � wA2 � � �+KA � wA3 � � �+IZ � wZ1 � � �+JZ � wZ2 � � �+KZ � wZ3 � � �Sine we're only interested in the salar omponent, the the vetor parts of this onjugated ube don't matter.We show the �rst few extension terms only; m-a-z extensions are indiated by � � � instead. By doubling this ube'ssalar omponent and adding to the salar part of either of the previous two ubes we obtain 3w0; then, divide by 3to obtain w0. We an now write the omplete �h�1 numerator term in various ways, two of whih are;�h�1 = (h�Rh)�Lh�R � S((h�Rh)�Lh�R)� R((h�Rh)�Lh�R) + R((h�Lh)�Rh�L) (A-29)+ ( S((h�Rh)�Lh�R) + 2S((h�Rhh�L) )=3= (h�Rh)�Lh�R + R( (h�Lh)�Rh�L � (h�Rh)�Lh�R )+ S( h�Rhh�L � (h�Rh)�Lh�R ) � (2=3) (A-30)or , �h�1 = (h�Lh)�Rh�L � S((h�Lh)�Rh�L)� L((h�Lh)�Rh�L) + L((h�Rh)�Lh�R) (A-31)+ ( S((h�Lh)�Rh�L) + 2S((h�Rhh�L) )=3= (h�Lh)�Rh�L + L( (h�Rh)�Lh�R � (h�Lh)�Rh�L )+ S( h�Rhh�L � (h�Lh)�Rh�L ) � (2=3) (A-32)



40Expanding the part operators using (A-19)-(A-22), we have,�h�1 = (h�Rh)�Lh�R� (((h�Rh)�Lh�R) + ((h�Rh)�Lh�R)� + ((h�Rh)�Lh�R)�R + ((h�Rh)�Lh�R)�L) � (2=12)� (((h�Rh)�Lh�R)� ((h�Rh)�Lh�R)� � ((h�Rh)�Lh�R)�R + ((h�Rh)�Lh�R)�L) � (1=4) (A-33)+ (((h�Lh)�Rh�L)� ((h�Lh)�Rh�L)� � ((h�Lh)�Rh�L)�R + ((h�Lh)�Rh�L)�L) � (1=4)+ ((h�Rhh�L) + (h�Rhh�L)� + (h�Rhh�L)�R + (h�Rhh�L)�L) � (2=12)�h�1 = (h�Rh)�Lh�R � 712 + ((h�Rh)�Lh�R)� � 112 + ((h�Rh)�Lh�R)�R � 112 � ((h�Rh)�Lh�R)�L � 512+ (h�Lh)�Rh�L � 312 � ((h�Lh)�Rh�L)� � 312 � ((h�Lh)�Rh�L)�R � 312 + ((h�Lh)�Rh�L)�L � 312 (A-34)+ h�Rhh�L � 212 + (h�Rhh�L)� � 212 + (h�Rhh�L)�R � 212 + (h�Rhh�L)�L � 212
) h�1 = 0BBBBBBBBB� 7 � (h�Rh)�Lh�R + ((h�Rh)�Lh�R)� + ((h�Rh)�Lh�R)�R � 5 � ((h�Rh)�Lh�R)�L+ 3 � (h�Lh)�Rh�L � 3 � ((h�Lh)�Rh�L)� � 3 � ((h�Lh)�Rh�L)�R + 3 � ((h�Lh)�Rh�L)�L+ 2 � h�Rhh�L + 2 � (h�Rhh�L)� + 2 � (h�Rhh�L)�R + 2 � (h�Rhh�L)�L7 � (h�Rh)�Lh�Rh + ((h�Rh)�Lh�R)�h + ((h�Rh)�Lh�R)�Rh � 5 � ((h�Rh)�Lh�R)�Lh+ 3 � (h�Lh)�Rh�Lh � 3 � ((h�Lh)�Rh�L)�h � 3 � ((h�Lh)�Rh�L)�Rh + 3 � ((h�Lh)�Rh�L)�Lh+ 2 � h�Rhh�Lh + 2 � (h�Rhh�L)�h + 2 � (h�Rhh�L)�Rh + 2 � (h�Rhh�L)�Lh

1CCCCCCCCCA (A-35)
and, �h�1 = (h�Lh)�Rh�L� (((h�Lh)�Rh�L) + ((h�Lh)�Rh�L)� + ((h�Lh)�Rh�L)�R + ((h�Lh)�Rh�L)�L) � (2=12)� (((h�Lh)�Rh�L)� ((h�Lh)�Rh�L)� + ((h�Lh)�Rh�L)�R � ((h�Lh)�Rh�L)�L) � (1=4) (A-36)+ (((h�Rh)�Lh�R)� ((h�Rh)�Lh�R)� + ((h�Rh)�Lh�R)�R � ((h�Rh)�Lh�R)�L) � (1=4)+ ((h�Rhh�L) + (h�Rhh�L)� + (h�Rhh�L)�R + (h�Rhh�L)�L) � (2=12)�h�1 = (h�Lh)�Rh�L � 712 + ((h�Lh)�Rh�L)� � 112 � ((h�Lh)�Rh�L)�R � 512 + ((h�Lh)�Rh�L)�L � 112+ (h�Rh)�Lh�R � 312 � ((h�Rh)�Lh�R)� � 312 + ((h�Rh)�Lh�R)�R � 312 � ((h�Rh)�Lh�R)�L � 312 (A-37)+ h�Rhh�L � 212 + (h�Rhh�L)� � 212 + (h�Rhh�L)�R � 212 + (h�Rhh�L)�L � 212
) h�1 = 0BBBBBBBBB� 7 � (h�Lh)�Rh�L + ((h�Lh)�Rh�L)� � 5 � ((h�Lh)�Rh�L)�R + ((h�Lh)�Rh�L)�L+ 3 � (h�Rh)�Lh�R � 3 � ((h�Rh)�Lh�R)� + 3 � ((h�Rh)�Lh�R)�R � 3 � ((h�Rh)�Lh�R)�L+ 2 � h�Rhh�L + 2 � (h�Rhh�L)� + 2 � (h�Rhh�L)�R + 2 � (h�Rhh�L)�L7 � (h�Lh)�Rh�Lh + ((h�Lh)�Rh�L)�h � 5 � ((h�Lh)�Rh�L)�Rh + ((h�Lh)�Rh�L)�Lh+ 3 � (h�Rh)�Lh�Rh � 3 � ((h�Rh)�Lh�R)�h + 3 � ((h�Rh)�Lh�R)�Rh � 3 � ((h�Rh)�Lh�R)�Lh+ 2 � h�Rhh�Lh + 2 � (h�Rhh�L)�h + 2 � (h�Rhh�L)�Rh + 2 � (h�Rhh�L)�Lh

1CCCCCCCCCA (A-38)
Formulas (A-35) and (A-38) represent two of the many possible ways to write the inverse, h�1. If we now takethese �nal formulas to represent h�1 = �(w)=�, then here, � = 12 � d, where d is the determinant of the matrix formof h , given also by the expression in (A-2). In a sense, this is just a way of doing matrix algebra using quaternions.



41The � is the quaternion expansion of the 4�4 real matrix determinant; or, in the �nal ase, 12 times this determi-nant. The numerator, �(w), is the adjoint matrix written out in quaternion format; or, 12 times this adjoint in our �nalase re-saling of terms. We re-sale for onveniene, to keep the intermediate frations like 1=12 out of the numerator.For a given bilinear form, h = A1B01 +A2B02 + � � �+AnB0n = XAkB0kthe 12 terms in this numerator for (A-35) have the forms[15℄+7 � (hr�h)l�hr = +7 �XXXA�i �Aj �A�k �B0�j � B0�i �B0k+1 � ((hr�h)l�hr)� = +1 �XXXAk �A�j � Ai �B0�k � B0i �B0j+1 � ((hr�h)l�hr)r = +1 �XXXAk �A�j � Ai �B0�j � B0�i �B0k�5 � ((hr�h)l�hr)l = �5 �XXXA�i �Aj �A�k �B0�k � B0i �B0j+3 � (hl�h)r�hl = +3 �XXXA�j �A�i � Ak � B0�i �B0j �B0�k�3 � ((hl�h)r�hl)� = �3 �XXXA�k �Ai �Aj �B0k � B0�j �B0i (A-39)�3 � ((hl�h)r�hl)r = �3 �XXXA�k �Ai �Aj �B0�i �B0j �B0�k+3 � ((hl�h)r�hl)l = +3 �XXXA�j �A�i � Ak � B0k �B0�j �B0i+2 �hr�h�hl = +2 �XXXA�i �Aj �Ak �B0i � B0j �B0�k+2 � (hr�h�hl)� = +2 �XXXA�k �A�j � Ai �B0k �B0�j �B0�i+2 � (hr�h�hl)r = +2 �XXXA�k �A�j � Ai �B0i �B0j �B0k�+2 � (hr�h�hl)l = +2 �XXXA�i �Aj �Ak �B0k �B0�j �B0�iand, the 12 terms in this numerator for (A-38) have the forms;+7 � (hl�h)r�hl = +7 �XXXA�j �A�i � Ak � B0�i �B0j �B0�k+1 � ((hl�h)r�hl)� = +1 �XXXA�k �Ai �Aj �B0k � B0�j �B0i (A-40)�5 � ((hl�h)r�hl)r = �5 �XXXA�k �Ai �Aj �B0�i �B0j �B0�k+1 � ((hl�h)r�hl)l = +1 �XXXA�j �A�i � Ak � B0k �B0�j �B0i+3 � (hr�h)l�hr = +3 �XXXA�i �Aj �A�k �B0�j � B0�i �B0k�3 � ((hr�h)l�hr)� = �3 �XXXAk �A�j � Ai �B0�k � B0i �B0j+3 � ((hr�h)l�hr)r = +3 �XXXAk �A�j � Ai �B0�j � B0�i �B0k�3 � ((hr�h)l�hr)l = �3 �XXXA�i �Aj �A�k �B0�k � B0i �B0j+2 �hr�h�hl = +2 �XXXA�i �Aj �Ak �B0i � B0j �B0�k+2 � (hr�h�hl)� = +2 �XXXA�k �A�j � Ai �B0k �B0�j �B0�i+2 � (hr�h�hl)r = +2 �XXXA�k �A�j � Ai �B0i �B0j �B0k�+2 � (hr�h�hl)l = +2 �XXXA�i �Aj �Ak �B0k �B0�j �B0�iHere the indiies, i; j; k, range from 1 to n. If we an arrange these bi-ubi terms into A�� A�A�� B0�� B0�B0�� form, then the onstrutionfor the denominator beomes, A�� A�A�� B0�� B0�B0�� � A�B0� = A�� A�A�� A�B0�� B0�B0�� B0� , and the onseutive fators fall into onvenient pairs,(A�� A�)(A�� A�)(B0�� B0�)(B0�� B0�), whih makes these non-abelian fators easier to re-arrange into salar values using the two known forms,jAsj2 = A�sAs 2 R, when the indies are the same, and (A�rAs) + (A�sAr) 2 R, when the indiies di�er.



42quaternion representation of matrix algebraEvery real 4� 4 matrix, H 2M(R; 4) , an be written as an hexpe number 2 Xn,H = [auv ℄ = 0B�a00 a01 a02 a03a10 a11 a12 a13a20 a21 a22 a23a30 a31 a32 a331CA = h0E + hR1IR + hR2JR + hR3KR+ hL1IL + hL2JL + hL3KL+ hM1IM + hM2JM + hM3KM+ hA1IA + hA2JA + hA3KA+ hZ1IZ + hZ2JZ + hZ3KZ (A-41)where the E; IR;JR; : : : ;KZ are the basis of Xn, the matrix oeÆients are auv, and the hexpe oeÆients hs. In eqns(2:36)-(2:37) of [PJ2℄, these previously disussed oeÆients are related and given by the equations;a00 = + h0 � hM1 � hM2 � hM3a10 = + hR1 + hL1 + hA1 � hZ1a20 = + hR2 + hL2 + hA2 � hZ2a30 = + hR3 + hL3 + hA3 � hZ3a01 = � hR1 � hL1 + hA1 � hZ1a11 = + h0 � hM1 + hM2 + hM3a21 = + hR3 � hL3 � hA3 � hZ3a31 = � hR2 + hL2 � hA2 � hZ2a02 = � hR2 � hL2 + hA2 � hZ2a12 = � hR3 + hL3 � hA3 � hZ3a22 = + h0 + hM1 � hM2 + hM3a32 = + hR1 � hL1 � hA1 � hZ1a03 = � hR3 � hL3 + hA3 � hZ3a13 = + hR2 � hL2 � hA2 � hZ2a23 = � hR1 + hL1 � hA1 � hZ1a33 = + h0 + hM1 + hM2 � hM3

h0 = (+ a00 + a11 + a22 + a33)=4hM1 = (� a00 � a11 + a22 + a33)=4hM2 = (� a00 + a11 � a22 + a33)=4hM3 = (� a00 + a11 + a22 � a33)=4hA1 = (+ a10 + a01 � a32 � a23)=4hA2 = (+ a20 � a31 + a02 � a13)=4hA3 = (+ a30 � a21 � a12 + a03)=4hZ1 = (� a10 � a01 � a32 � a23)=4hZ2 = (� a20 � a31 � a02 � a13)=4hZ3 = (� a30 � a21 � a12 � a03)=4hR1 = (+ a10 � a01 + a32 � a23)=4hR2 = (+ a20 � a31 � a02 + a13)=4hR3 = (+ a30 + a21 � a12 � a03)=4hL1 = (+ a10 � a01 � a32 + a23)=4hL2 = (+ a20 + a31 � a02 � a13)=4hL3 = (+ a30 � a21 + a12 � a03)=4
(A-42)

quaternion expansions of the adjoint matrixHy = ( ( + 7 � (H�R �H)�L �H�R + 3 � (H�L �H)�R �H�L + 2 �H�R �H �H�L )+ ( + 1 � (H�R �H)�L �H�R � 3 � (H�L �H)�R �H�L + 2 �H�R �H �H�L )�+ ( + 1 � (H�R �H)�L �H�R � 3 � (H�L �H)�R �H�L + 2 �H�R �H �H�L )�R+ ( � 5 � (H�R �H)�L �H�R + 3 � (H�L �H)�R �H�L + 2 �H�R �H �H�L )�L )=12 (A-43)
= ( ( + 7 � (H�L �H)�R �H�L + 3 � (H�R �H)�L �H�R + 2 �H�R �H �H�L )+ ( + 1 � (H�L �H)�R �H�L � 3 � (H�R �H)�L �H�R + 2 �H�R �H �H�L )�+ ( � 5 � (H�L �H)�R �H�L + 3 � (H�R �H)�L �H�R + 2 �H�R �H �H�L )�R+ ( + 1 � (H�L �H)�R �H�L � 3 � (H�R �H)�L �H�R + 2 �H�R �H �H�L )�L )=12 (A-44)quaternion expansions of the matrix determinantdet(H) = ( + 7 � (H�R �H)�L �H�R �H + 3 � (H�L �H)�R �H�L �H + 2 �H�R �H �H�L �H+ 1 � ((H�R �H)�L �H�R)� �H � 3 � ((H�L �H)�R �H�L)� �H + 2 � (H�R �H �H�L)� �H+ 1 � ((H�R �H)�L �H�R)�R �H � 3 � ((H�L �H)�R �H�L)�R �H + 2 � (H�R �H �H�L)�R �H� 5 � ((H�R �H)�L �H�R)�L �H + 3 � ((H�L �H)�R �H�L)�L �H + 2 � (H�R �H �H�L)�L �H )=12 (A-45)

= ( + 7 � (H�L �H)�R �H�L �H + 3 � (H�R �H)�L �H�R �H + 2 �H�R �H �H�L �H+ 1 � ((H�L �H)�R �H�L)� �H � 3 � ((H�R �H)�L �H�R)� �H + 2 � (H�R �H �H�L)� �H� 5 � ((H�L �H)�R �H�L)�R �H + 3 � ((H�R �H)�L �H�R)�R �H + 2 � (H�R �H �H�L)�R �H+ 1 � ((H�L �H)�R �H�L)�L �H � 3 � ((H�R �H)�L �H�R)�L �H + 2 � (H�R �H �H�L)�L �H )=12 (A-46)



43For a given matrix, H , it's adjoint, Hy, an be given a quaternion expansion in more than one way. Equations(A-43) and (A-44) illustrate the formulas for two suh expansions, written using the four onjugated states; eah ofthe four lines in the formula having an outer onjugation from one of the four states. The inner expression onjugated,is, however, di�erent from one line to the next. But, the di�erene is only in the numerial oeÆients that modifythe ommon onjugated ubes appearing in the sum. If these numerial oeÆients were all the same, and of thesame sign, then we'd be ombining the four onjugated states of the same hexpe number, onsequently, the adjointwould ollapse to a salar value, aording to the rule (A-19). Sine the adjoint matrix is, in general, a non-salarentity, we expet to have some variations in the sign and magnitude of these numerial oeÆients. However, thebest, most symmetrial, or most eÆient onstrution, for the adjoint, in terms of quaternion expansions, is thesubjet of ongoing researh. Two quaternion expansions for the determinant are shown in eqns (A-45) and (A-46).In hexpe basis format, the matrix, H , it's adjoint, Hy, and determinant, det(H), are;H = h0 + hM1IM + hM2JM + hM3KM + hA1IA + hA2JA + hA3KA + hZ1IZ + hZ2JZ + hZ3KZ (A-47)+ hR1IR + hR2JR + hR3KR + hL1IL + hL2JL + hL3KLHy = w0 + wM1IM +wM2JM +wM3KM +wA1IA +wA2JA + wA3KA + wZ1IZ +wZ2JZ +wZ3KZ (A-48)+wR1IR + wR2JR +wR3KR +wL1IL + wL2JL + wL3KLd = det(H) = HyH = HHy = S(HyH) = S(HHy) (A-49)= h0w0(1 � 1)+ hM1wM1(IM � IM ) + hM2wM2(JM � JM ) + hM3wM3(KM �KM )+ hA1wA1(IA � IA) + hA2wA2(JA � JA) + hA3wA3(KA �KA)+ hZ1wZ1(IZ � IZ) + hZ2wZ2(JZ � JZ) + hZ3wZ3(KZ �KZ)+ hR1wR1(IR � IR) + hR2wR2(JR � JR) + hR3wR3(KR �KR)+ hL1wL1(IL � IL) + hL2wL2(JL � JL) + hL3wL3(KL �KL)= h0w0 + hM1wM1 + hM2wM2 + hM3wM3 + hA1wA1 + hA2wA2 + hA3wA3 + hZ1wZ1 + hZ2wZ2 + hZ3wZ3 (A-2)� hR1wR1 � hR2wR2 � hR3wR3 � hL1wL1 � hL2wL2 � hL3wL3The inverse is then, H�1 = Hydet(H) , and the determinant has the form reminding us of the dot produt ofvetors, with � signs orresponding to the partiular squares of the unit basis elements{the r-l anti-ommutingquaternions having the � sign, while the ommuting m-a-z hyperomplex numbers produing the + sign. Looked atanother way, we an \ fator " a salar, � 2 R, into two 16-dimensional hyperomplex numbers, � = Hy �H; Hy;H 2 Xn.360 ubes. To �nd other quaternion expansions for the adjoint and determinant we need to onsider alternativeonjugated ubes. Now, while there are only 32 unique onjugated squares, there happen to be 360 unique onjugatedubes. So, there are many more ubes to hoose from in the searh for these expansions. The squares need no morethan three onjugations to establish the unique set, but the ubes need �ve onjugations. At the least, a square issimply, hh, and at most, it's of the form, (h�Rh�R)�R. The ube ranges from, hhh, to, (h�R(h�Rh�L)�L)�R. To seewhy we don't need more than �ve onjugations on the ube, let's try to add one more to the outside;((h�R(h�Rh�L)�L)�R)�R = h�R(h�Rh�L)�L (A-50)((h�R(h�Rh�L)�L)�R)�L = (h�R(h�Rh�L)�L)� = (h�Rh�L)�Rh�L (A-51)((h�R(h�Rh�L)�L)�R)� = (h�R(h�Rh�L)�L)�L (A-52)Adding an extra ( � )�R simply anels the outer one that is already there, an extra ( � )�L ombines to form thenormal onjugate ( � )� whih then simpli�es the expression further, while an extra ( � )� onverts the existing



44( � )�R into an ( � )�L. So, whih ever way we try, the �ve onjugated ube remains at �ve or even redues to alesser ount of onjugations. Similarly, if we introdue an extra onjugation somewhere inside the expression, theresult is either to onvert existing onjugations into other forms, or redue the form again. So, �ve onjugationsare the maximum required to establish the unique set of ubes[16℄. Now the four onjugated states an belabeled, n r l, for unonjugated, normal onjugate, right onjugate, and left onjugate. In rpn notation[17℄,the algebrai expression for, (hRhL)�, an be written, hrhlxn. Here the x represents multipliation of the twoprevious terms on the stak, and the n r l letters indiate onjugations to be applied to the top elementof the stak at that point in the omputation|the undersore atually representing \ blank ", i.e. noletter there, for the unonjugated state. This is a onvenient notation for writing symboli ode to implementhexpe algorithms, that also happens to be onvenient for ounting the number of squares and ubes in a partiular set.A square always has to have two h letters and one x multipliation operation, e.g. hhx is hh. Then, up to threeonjugations an be inluded: h.h.x.  here the dots . show the loations in the expression where the four n r lletters may appear. With 3 loations and 4 letters we'd get 4� 4� 4 = 64 squares. However, the normal onjugate non the outside right dot . always onverts the inside expression into another form that's already inluded in the ountof unique squares; e.g. (h�Rh)� ! h�h�L, so that, hrhxn ! hnhlx. Then again, a left onjugate l on that outsidedot . an always be onverted into a right onjugate; e.g. (h�Lh�)�L ! ((h�Lh�)�)�R ! (hh�R)�R, so that, hlhnxl! hhrxr; therefore, we never really need the two onjugations n l on the outer dot loation. This means the uniquesquares are only 4 � 4 � 2 = 32 in number. Similarly, a ube must have three h letters and two x multipliationoperations; e.g. hhhxx is hhh. There are now 5 loations, h.h.h.x.x. or h.h.x.h.x. , in eah of two possiblesequenes, for us to hoose from, to plae our 4 onjugations n r l. Again, the outermost right dot . doesn't requirethe two letters n l, in either of these sequenes; so, only 2 hoies remain there{same for inner x; however, a blankappearing there, i.e. h.h.xh.x. e�etively dupliates an h.h.h.xx. , so leaves only 1 hoie, r, and this is thereforealways h.h.xrh.x. . A less obvious double pair fator swap yields another 24 dupliates; shown in the table below:h . h . h . x . x . h . h . x .h . x .360 = 384 � 24 = 256 + 128 � 24 = 4 � 4 � 4 � 2 � 2 + 4 � 4 � 1 � 4 � 2 � 24hhnhxrx = hhnxrhx = h(h�h)�R = (hh�)�Rhhhnhxrxr = hhnxrhxr = (h(h�h)�R)�R = ((hh�)�Rh)�Rhrhlhnxrx = hnhlxrhrx = h�R(h�Lh�)�R = (h�h�L)�Rh�Rhlhrhxrx = hhrxrhlx = h�L(h�Rh)�R = (hh�R)�Rh�Lhrhnhrxrx = hrhnxrhrx = h�R(h�h�R)�R = (h�Rh�)�Rh�Rhnhhnxrxr = hnhxrhnxr = (h�(hh�)�R)�R = ((h�h)�Rh�)�Rhlhhlxrx = hlhxrhlx = h�L(hh�L)�R = (h�Lh)�Rh�Lhnhhnxrx = hnhxrhnx = h�(hh�)�R = (h�h)�Rh�hrhlhnxrxr = hnhlxrhrxr = (h�R(h�Lh�)�R)�R = ((h�h�L)�Rh�R)�Rhlhrhxrxr = hhrxrhlxr = (h�L(h�Rh)�R)�R = ((hh�R)�Rh�L)�Rhrhnhrxrxr = hrhnxrhrxr = (h�R(h�h�R)�R)�R = ((h�Rh�)�Rh�R)�Rhlhhlxrxr = hlhxrhlxr = (h�L(hh�L)�R)�R = ((h�Lh)�Rh�L)�Rhhnhlxrx = hlhnxrhx = h(h�h�L)�R = (h�Lh�)�Rhhhlhxrx = hhlxrhx = h(h�Lh)�R = (hh�L)�Rhhhnhlxrxr = hlhnxrhxr = (h(h�h�L)�R)�R = ((h�Lh�)�Rh)�Rhhlhxrxr = hhlxrhxr = (h(h�Lh)�R)�R = ((hh�L)�Rh)�Rhnhhrxrxr = hrhxrhnxr = (h�(hh�R)�R)�R = ((h�Rh)�Rh�)�Rhnhhrxrx = hrhxrhnx = h�(hh�R)�R = (h�Rh)�Rh�hnhrhnxrxr = hnhrxrhnxr = (h�(h�Rh�)�R)�R = ((h�h�R)�Rh�)�Rhnhrhnxrx = hnhrxrhnx = h�(h�Rh�)�R = (h�h�R)�Rh�hrhlhrxrx = hrhlxrhrx = h�R(h�Lh�R)�R = (h�Rh�L)�Rh�Rhlhrhlxrx = hlhrxrhlx = h�L(h�Rh�L)�R = (h�Lh�R)�Rh�Lhrhlhrxrxr = hrhlxrhrxr = (h�R(h�Lh�R)�R)�R = ((h�Rh�L)�Rh�R)�Rhlhrhlxrxr = hlhrxrhlxr = (h�L(h�Rh�L)�R)�R = ((h�Lh�R)�Rh�L)�RTable shows the non-obvious equivalent ubes; on the left in RPN notation, then again on the right in our usual symbol format. Twopairwise permutations of order equivalates, i.e. the normal onjugate obeys the rule, (gh)� = h�g�, with the reversal of the pair offators, but the partial onjugates do not, instead, two pairs must be reversed simultaneously, e.g. (h�Rh)�Rh� ! h� � (h�Rh)�R !h�(h�Rh)�R ! h�(h � h�R)�R, to obtain equal expressions|only avilable in ubi and higher!



45table of the 360 onjugated ubesand their extension termspage 1-of-6: (1-60)No. CUBE S R L M A Z0 Hy 0 0 0 0 0 01 HHHxx 0�1�2 3�4 5 0 1 4 5 5�6�6�8 9 9 0 1 4 5 5�6�6�8 9 9 � � �2 HHHxxR 0�1�2 3�4 5 0�2�5 6 7 8 8�9 0 1 4 5 5�6�6�8 9 9 � � �3 HHHxRx 0 1 1�2�3 0 4 5 5 8 0 3 8 9 9 � � �4 HHxRHx 0 1 1�2�3 0 4 5 5 8 0�3 8 9 9 � � �5 HHHRxx 0 1 1�2�3 �0�4�5�5�8 0�3 8 9 9 � � �6 HHRHxx 0 1 1�2�3 �0�1�1�4�5�5�8 0�2�2 4 8 9 9 � � �7 HRHHxx 0 1 1�2�3 �0�4�5�5�8 0 3 8 9 9 � � �8 HNHNHNxxR 0�1�2 3�4 5 0 1 4 5 5�6�6�8 9 9 0�2�5 6 7 8 8�9 � � �9 HHNHNxRx 0 1 1�3�4 0 3 8 9 9 0 4 5 5 8 � � �10 HNHNxRHx 0 1 1�3�4 0�3 8 9 9 0 4 5 5 8 � � �11 HHHLxx 0 1 1�3�4 0�3 8 9 9 �0�4�5�5�8 � � �12 HHLHxx 0 1 1�3�4 0�2�2 4 8 9 9 �0�1�1�4�5�5�8 � � �13 HLHHxx 0 1 1�3�4 0 3 8 9 9 �0�4�5�5�8 � � �14 HNHNHNxx 0�1�2 3�4 5 0�2�5 6 7 8 8�9 0�2�5 6 7 8 8�9 � � �15 HHNHNxx 0�1�3 5 0 1�3�6�6 8 0 1�3�6�6 8 � � �16 HNHNHxx 0�1�3 5 0 1 3�6�6 8 0 1 3�6�6 8 � � �17 HHHNxx 0�1�3 5 �0�1 3 6 6�8 �0�1 3 6 6�8 � � �18 HHNHxx 0�1�3 5 �0 1 2 2�4 6 6�8 �0 1 2 2�4 6 6�8 � � �19 HNHHxx 0�1�3 5 �0�1�3 6 6�8 �0�1�3 6 6�8 � � �20 HHHxRxR 0 1 1�2�3 �0�4�5�5�8 0 3 8 9 9 � � �21 HHxRHxR 0 1 1�2�3 �0�4�5�5�8 0�3 8 9 9 � � �22 HHHRxxR 0 1 1�2�3 0 4 5 5 8 0�3 8 9 9 � � �23 HHRHxxR 0 1 1�2�3 0 1 1 4 5 5 8 0�2�2 4 8 9 9 � � �24 HRHHxxR 0 1 1�2�3 0 4 5 5 8 0 3 8 9 9 � � �25 HHNHNxRxR 0 1 1�3�4 �0�3�8�9�9 0 4 5 5 8 � � �26 HNHNxRHxR 0 1 1�3�4 �0 3�8�9�9 0 4 5 5 8 � � �27 HHHLxxR 0 1 1�3�4 �0 3�8�9�9 �0�4�5�5�8 � � �28 HHLHxxR 0 1 1�3�4 �0 2 2�4�8�9�9 �0�1�1�4�5�5�8 � � �29 HLHHxxR 0 1 1�3�4 �0�3�8�9�9 �0�4�5�5�8 � � �30 HHNHNxxR 0�1�3 5 �0�1 3 6 6�8 0 1�3�6�6 8 � � �31 HNHNHxxR 0�1�3 5 �0�1�3 6 6�8 0 1 3�6�6 8 � � �32 HHHNxxR 0�1�3 5 0 1�3�6�6 8 �0�1 3 6 6�8 � � �33 HHNHxxR 0�1�3 5 0�1�2�2 4�6�6 8 �0 1 2 2�4 6 6�8 � � �34 HNHHxxR 0�1�3 5 0 1 3�6�6 8 �0�1�3 6 6�8 � � �35 HHHRxRx 0�1�2�3 �0�1�4�5�5�8 0 1�2�2 4 8 9 9 � � �36 HHRHxRx 0�1�2�3 �0 1�4�5�5�8 0 1�3 8 9 9 � � �37 HRHHxRx 0�1�2 3�4 5 0�2�5 6 7 8 8�9 0 1 4 5 5�6�6�8 9 9 � � �38 HHxRHRx 0�1�2 3�4 5 0�2�5 6 7 8 8�9 0 1 4 5 5�6�6�8 9 9 � � �39 HHRxRHx 0�1�2�3 �0 1�4�5�5�8 0 1 3 8 9 9 � � �40 HRHxRHx 0�1�2�3 �0�1�4�5�5�8 0 1�2�2 4 8 9 9 � � �41 HHRHRxx 0�1�2�3 0 1 4 5 5 8 0 1 3 8 9 9 � � �42 HRHHRxx 0�1�2�3 0�1 4 5 5 8 0 1�2�2 4 8 9 9 � � �43 HRHRHxx 0�1�2�3 0 1 4 5 5 8 0 1�3 8 9 9 � � �44 HLHNHNxxR 0 1 1�2�3 �0�4�5�5�8 �0 3�8�9�9 � � �45 HNHLHNxxR 0 1 1�2�3 �0�1�1�4�5�5�8 �0 2 2�4�8�9�9 � � �46 HNHNHLxxR 0 1 1�2�3 �0�4�5�5�8 �0�3�8�9�9 � � �47 HHLHNxRx 0�1 �0�1 0 1�2�2 3 4 � � �48 HHNHLxRx 0�1 �0 1 0 1 �0�1 �0�1 �0�149 HRHNHNxRx 0�1�3 5 �0�1�3 6 6�8 0 1�3�6�6 8 � � �50 HNHNxRHRx 0�1�3 5 �0�1 3 6 6�8 0 1 3�6�6 8 � � �51 HNHLxRHx 0�1 �0�1 0 1�2�2�3 4 � � �52 HHRHLxx 0�1 �0 1 �0�1 2 2�3�4 � � �53 HRHHLxx 0�1 �0�1 �0�1 � � �54 HHLHRxx 0�1 �0�1 2 2�3�4 �0 1 � � �55 HRHLHxx 0�1 �0�1 2 2 3�4 �0 1 � � �56 HLHHRxx 0�1 �0�1 �0�1 � � �57 HLHRHxx 0�1 �0 1 �0�1 2 2 3�4 � � �58 HLHNHNxx 0 1 1�2�3 0 4 5 5 8 �0 3�8�9�9 � � �59 HNHLHNxx 0 1 1�2�3 0 1 1 4 5 5 8 �0 2 2�4�8�9�9 � � �60 HNHNHLxx 0 1 1�2�3 0 4 5 5 8 �0�3�8�9�9 � � �



46table of the 360 onjugated ubesand their extension termspage 2-of-6: (61-120)No. CUBE S R L M A Z61 HHLHNxx 0 1 1 �0 0 � � �62 HHNHLxx 0 1 1 �0�1�1 0�2�2 3 4 � � �63 HRHNHNxx 0 1 1�3�4 �0 3�8�9�9 0 4 5 5 8 � � �64 HNHNHRxx 0 1 1�3�4 �0�3�8�9�9 0 4 5 5 8 � � �65 HLHNHxx 0 1 1 �0�1�1 0�2�2�3 4 � � �66 HNHLHxx 0 1 1 �0 0 � � �67 HHRHNxx 0 1 1 0 �0 � � �68 HRHHNxx 0 1 1 0 1 1 �0 2 2�3�4 � � �69 HHNHRxx 0 1 1 0�2�2 3 4 �0�1�1 � � �70 HRHNHxx 0 1 1 0�2�2�3 4 �0�1�1 � � �71 HNHHRxx 0 1 1 0 1 1 �0 2 2 3�4 � � �72 HNHRHxx 0 1 1 0 �0 � � �73 HNHNxRHNxR 0 1 1�2�3 0 4 5 5 8 �0�3�8�9�9 � � �74 HNHNHNxRxR 0 1 1�2�3 0 4 5 5 8 �0 3�8�9�9 � � �75 HHxRHNxR 0 1 1�3�4 0 3 8 9 9 �0�4�5�5�8 � � �76 HNHHxRxR 0 1 1�3�4 0�3 8 9 9 �0�4�5�5�8 � � �77 HRHNHNxxR 0 1 1�3�4 0�3 8 9 9 0 4 5 5 8 � � �78 HNHRHNxxR 0 1 1�3�4 0�2�2 4 8 9 9 0 1 1 4 5 5 8 � � �79 HNHNHRxxR 0 1 1�3�4 0 3 8 9 9 0 4 5 5 8 � � �80 HNHHNxxR 0�1�3 5 �0 1 2 2�4 6 6�8 0�1�2�2 4�6�6 8 � � �81 HHHLxRx 0�1 0 1�2�2 3 4 �0�1 � � �82 HHLHxRx 0�1 0 1 �0 1 �0�1 �0�1 �0�183 HLHHxRx 0�1�3 5 0 1�3�6�6 8 �0�1�3 6 6�8 � � �84 HHxRHLx 0�1�3 5 0 1 3�6�6 8 �0�1 3 6 6�8 � � �85 HLHxRHx 0�1 0 1�2�2�3 4 �0�1 � � �86 HHRHNxRx 0�1�3�4 0 1�2�2 4 8 9 9 �0�1�4�5�5�8 � � �87 HHNHRxRx 0�1�3�4 0 1�3 8 9 9 �0 1�4�5�5�8 � � �88 HLHNHNxRx 0�1�2 3�4 5 0 1 4 5 5�6�6�8 9 9 0�2�5 6 7 8 8�9 � � �89 HNHNxRHLx 0�1�2 3�4 5 0 1 4 5 5�6�6�8 9 9 0�2�5 6 7 8 8�9 � � �90 HRHNxRHx 0�1�3�4 0 1 3 8 9 9 �0 1�4�5�5�8 � � �91 HNHRxRHx 0�1�3�4 0 1�2�2 4 8 9 9 �0�1�4�5�5�8 � � �92 HHLHLxx 0�1�3�4 0 1 3 8 9 9 0 1 4 5 5 8 � � �93 HLHHLxx 0�1�3�4 0 1�2�2 4 8 9 9 0�1 4 5 5 8 � � �94 HLHLHxx 0�1�3�4 0 1�3 8 9 9 0 1 4 5 5 8 � � �95 HNHRHNxx 0 1 1�3�4 �0 2 2�4�8�9�9 0 1 1 4 5 5 8 � � �96 HLHHNxx 0 1 1 �0 2 2�3�4 0 1 1 � � �97 HNHHLxx 0 1 1 �0 2 2 3�4 0 1 1 � � �98 HNHNxRHNx 0 1 1�2�3 �0�4�5�5�8 �0�3�8�9�9 � � �99 HNHNHNxRx 0 1 1�2�3 �0�4�5�5�8 �0 3�8�9�9 � � �100 HHxRHNx 0 1 1�3�4 �0�3�8�9�9 �0�4�5�5�8 � � �101 HNHHxRx 0 1 1�3�4 �0 3�8�9�9 �0�4�5�5�8 � � �102 HNHHNxx 0�1�3 5 0�1�2�2 4�6�6 8 0�1�2�2 4�6�6 8 � � �103 HHHNxRx 0 1 1 �0 2 2�3�4 �0 2 2�3�4 � � �104 HHNHxRx 0 1 1 �0�1�1 �0�1�1 0 1 1 0 1 1 0 1 1105 HNHxRHx 0 1 1 �0 2 2 3�4 �0 2 2 3�4 � � �106 HHHRxRxR 0�1�2�3 0 1 4 5 5 8 0 1�2�2 4 8 9 9 � � �107 HHRHxRxR 0�1�2�3 0�1 4 5 5 8 0 1�3 8 9 9 � � �108 HRHHxRxR 0�1�2 3�4 5 0 1 4 5 5�6�6�8 9 9 0 1 4 5 5�6�6�8 9 9 � � �109 HHxRHRxR 0�1�2 3�4 5 0 1 4 5 5�6�6�8 9 9 0 1 4 5 5�6�6�8 9 9 � � �110 HHRxRHxR 0�1�2�3 0�1 4 5 5 8 0 1 3 8 9 9 � � �111 HRHxRHxR 0�1�2�3 0 1 4 5 5 8 0 1�2�2 4 8 9 9 � � �112 HHRHRxxR 0�1�2�3 �0�1�4�5�5�8 0 1 3 8 9 9 � � �113 HNHHNxRx 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1114 HRHRHxxR 0�1�2�3 �0�1�4�5�5�8 0 1�3 8 9 9 � � �115 HHLHNxRxR 0�1 0 1 0 1�2�2 3 4 � � �116 HHNHLxRxR 0�1 0�1 0 1 0 1 0 1 0 1117 HRHNHNxRxR 0�1�3 5 0 1 3�6�6 8 0 1�3�6�6 8 � � �118 HNHNxRHRxR 0�1�3 5 0 1�3�6�6 8 0 1 3�6�6 8 � � �119 HNHLxRHxR 0�1 0 1 0 1�2�2�3 4 � � �120 HHRHLxxR 0�1 0�1 �0�1 2 2�3�4 � � �



47table of the 360 onjugated ubesand their extension termspage 3-of-6: (121-180)No. CUBE S R L M A Z121 HRHHLxxR 0�1 0 1 �0�1 � � �122 HHLHRxxR 0�1 0 1�2�2 3 4 �0 1 � � �123 HRHLHxxR 0�1 0 1�2�2�3 4 �0 1 � � �124 HLHHRxxR 0�1 0 1 �0�1 � � �125 HLHRHxxR 0�1 0�1 �0�1 2 2 3�4 � � �126 HHLHNxxR 0 1 1 0 0 � � �127 HHNHLxxR 0 1 1 0 1 1 0�2�2 3 4 � � �128 HLHNHxxR 0 1 1 0 1 1 0�2�2�3 4 � � �129 HNHLHxxR 0 1 1 0 0 � � �130 HHRHNxxR 0 1 1 �0 �0 � � �131 HRHHNxxR 0 1 1 �0�1�1 �0 2 2�3�4 � � �132 HHNHRxxR 0 1 1 �0 2 2�3�4 �0�1�1 � � �133 HRHNHxxR 0 1 1 �0 2 2 3�4 �0�1�1 � � �134 HNHHRxxR 0 1 1 �0�1�1 �0 2 2 3�4 � � �135 HNHRHxxR 0 1 1 �0 �0 � � �136 HHHLxRxR 0�1 �0�1 2 2�3�4 �0�1 � � �137 HHLHxRxR 0�1 �0�1 �0 1 0 1 0 1 0 1138 HLHHxRxR 0�1�3 5 �0�1 3 6 6�8 �0�1�3 6 6�8 � � �139 HHxRHLxR 0�1�3 5 �0�1�3 6 6�8 �0�1 3 6 6�8 � � �140 HLHxRHxR 0�1 �0�1 2 2 3�4 �0�1 � � �141 HHRHNxRxR 0�1�3�4 0 2 5�6 7�9 �0�1�4�5�5�8 � � �142 HHNHRxRxR 0�1�3�4 �0�1 3�8�9�9 �0 1�4�5�5�8 � � �143 HLHNHNxRxR 0�1�2 3�4 5 0�2�5 6 7 8 8�9 0�2�5 6 7 8 8�9 � � �144 HNHNxRHLxR 0�1�2 3�4 5 0�2�5 6 7 8 8�9 0�2�5 6 7 8 8�9 � � �145 HRHNxRHxR 0�1�3�4 �0�1�3�8�9�9 �0 1�4�5�5�8 � � �146 HNHRxRHxR 0�1�3�4 0 2 5�6 7�9 �0�1�4�5�5�8 � � �147 HHLHLxxR 0�1�3�4 �0�1�3�8�9�9 0 1 4 5 5 8 � � �148 HLHHLxxR 0�1�3�4 0 2 5�6 7�9 0�1 4 5 5 8 � � �149 HLHLHxxR 0�1�3�4 �0�1 3�8�9�9 0 1 4 5 5 8 � � �150 HLHHNxxR 0 1 1 0�2�2 3 4 0 1 1 � � �151 HNHHLxxR 0 1 1 0�2�2�3 4 0 1 1 � � �152 HHHNxRxR 0 1 1 0�2�2 3 4 �0 2 2�3�4 � � �153 HHNHxRxR 0 1 1 0 1 1 �0�1�1 �0�1�1 �0�1�1 �0�1�1154 HNHxRHxR 0 1 1 0�2�2�3 4 �0 2 2 3�4 � � �155 HHRHRxRx 0 1 1�2 3�4 5 0 4 5 5�6�6�8 9 9 0 4 5 5�6�6�8 9 9 � � �156 HRHHRxRx 0 1 1�2�3 0 1 1 4 5 5 8 0�3 8 9 9 � � �157 HRHRHxRx 0 1 1�2�3 0 4 5 5 8 0�2�2 4 8 9 9 � � �158 HHRxRHRx 0 1 1�2�3 0 4 5 5 8 0�2�2 4 8 9 9 � � �159 HRHxRHRx 0 1 1�2�3 0 1 1 4 5 5 8 0 3 8 9 9 � � �160 HRHRxRHx 0 1 1�2 3�4 5 0 4 5 5�6�6�8 9 9 0 4 5 5�6�6�8 9 9 � � �161 HRHRHRxx 0 1 1�2 3�4 5 �0�4�5�5 6 6 8�9�9 0 4 5 5�6�6�8 9 9 � � �162 HLHLHNxxR 0�1�2�3 0 1 4 5 5 8 �0�1�3�8�9�9 � � �163 HLHNHLxxR 0�1�2�3 0�1 4 5 5 8 0 2 5�6 7�9 � � �164 HNHLHLxxR 0�1�2�3 0 1 4 5 5 8 �0�1 3�8�9�9 � � �165 HHLHLxRx 0 1 1�3 5 0�3�6�6 8 0�3�6�6 8 � � �166 HRHLHNxRx 0 1 1 0 1 1 0 0 0 0167 HRHNHLxRx 0 1 1 0 0�2�2 3 4 � � �168 HLHNxRHRx 0 1 1 0 0�2�2�3 4 � � �169 HLHLxRHx 0 1 1�3 5 0 3�6�6 8 0 3�6�6 8 � � �170 HRHRHLxx 0 1 1�3 5 0 3�6�6 8 �0 3 6 6�8 � � �171 HRHLHRxx 0 1 1�3 5 0 1 1�2�2 4�6�6 8 �0�1�1 2 2�4 6 6�8 � � �172 HLHRHRxx 0 1 1�3 5 0�3�6�6 8 �0�3 6 6�8 � � �173 HLHLHNxx 0�1�2�3 �0�1�4�5�5�8 �0�1�3�8�9�9 � � �174 HLHNHLxx 0�1�2�3 �0 1�4�5�5�8 0 2 5�6 7�9 � � �175 HNHLHLxx 0�1�2�3 �0�1�4�5�5�8 �0�1 3�8�9�9 � � �176 HRHLHNxx 0�1 0�1 0 1�2�2 3 4 � � �177 HRHNHLxx 0�1 0 1 0 1 � � �178 HLHNHRxx 0�1 0 1 0 1 � � �179 HNHLHRxx 0�1 0�1 0 1�2�2�3 4 � � �180 HRHRHNxx 0�1�3�4 �0�1�3�8�9�9 �0�1�4�5�5�8 � � �



48table of the 360 onjugated ubesand their extension termspage 4-of-6: (181-240)No. CUBE S R L M A Z181 HRHNHRxx 0�1�3�4 0 2 5�6 7�9 �0 1�4�5�5�8 � � �182 HNHRHRxx 0�1�3�4 �0�1 3�8�9�9 �0�1�4�5�5�8 � � �183 HLHNxRHNxR 0�1�2�3 �0�1�4�5�5�8 0 2 5�6 7�9 � � �184 HNHLxRHNxR 0�1�2�3 �0 1�4�5�5�8 �0�1 3�8�9�9 � � �185 HNHLHNxRxR 0�1�2�3 �0 1�4�5�5�8 �0�1�3�8�9�9 � � �186 HNHNHLxRxR 0�1�2�3 �0�1�4�5�5�8 0 2 5�6 7�9 � � �187 HHRxRHNxR 0�1 �0�1 �0�1 2 2�3�4 � � �188 HNHHRxRxR 0�1 �0 1 �0�1 0 1 0 1 0 1189 HNHRHxRxR 0�1 �0�1 �0�1 2 2 3�4 � � �190 HRHLHNxxR 0�1 �0 1 0 1�2�2 3 4 � � �191 HRHNHLxxR 0�1 �0�1 0 1 � � �192 HLHRHNxxR 0�1 �0�1 2 2�3�4 0�1 � � �193 HNHRHLxxR 0�1 �0�1 2 2 3�4 0�1 � � �194 HLHNHRxxR 0�1 �0�1 0 1 � � �195 HNHLHRxxR 0�1 �0 1 0 1�2�2�3 4 � � �196 HHRHLxRx 0 1 1�3 5 �0�1�1 2 2�4 6 6�8 �0 3 6 6�8 � � �197 HRHHLxRx 0 1 1�3�4 �0 2 2�4�8�9�9 �0�4�5�5�8 � � �198 HHLHRxRx 0 1 1�3 5 �0 3 6 6�8 �0�1�1 2 2�4 6 6�8 � � �199 HRHLHxRx 0 1 1�3�4 �0�3�8�9�9 �0�1�1�4�5�5�8 � � �200 HLHHRxRx 0 1 1 �0 �0 2 2 3�4 � � �201 HLHRHxRx 0 1 1 �0�1�1 �0 0 0 0202 HRHxRHLx 0 1 1 �0 �0 2 2�3�4 � � �203 HHLxRHRx 0 1 1�3�4 �0 3�8�9�9 �0�1�1�4�5�5�8 � � �204 HRHLxRHx 0 1 1�3 5 �0�3 6 6�8 �0�1�1 2 2�4 6 6�8 � � �205 HLHxRHRx 0 1 1�3�4 �0 2 2�4�8�9�9 �0�4�5�5�8 � � �206 HLHRxRHx 0 1 1�3 5 �0�1�1 2 2�4 6 6�8 �0�3 6 6�8 � � �207 HRHRHNxRx 0 1 1 �0 2 2 3�4 �0 � � �208 HRHNHRxRx 0 1 1 �0 �0�1�1 0 0 0209 HLHLHNxRx 0 1 1�2�3 �0�4�5�5�8 �0 2 2�4�8�9�9 � � �210 HLHNHLxRx 0 1 1�2�3 �0�1�1�4�5�5�8 �0�3�8�9�9 � � �211 HLHNxRHLx 0 1 1�2�3 �0�1�1�4�5�5�8 �0 3�8�9�9 � � �212 HNHLxRHLx 0 1 1�2�3 �0�4�5�5�8 �0 2 2�4�8�9�9 � � �213 HNHRxRHRx 0 1 1 �0 2 2�3�4 �0 � � �214 HRHLHLxx 0 1 1�3 5 �0�3 6 6�8 0�3�6�6 8 � � �215 HLHRHLxx 0 1 1�3 5 �0�1�1 2 2�4 6 6�8 0 1 1�2�2 4�6�6 8 � � �216 HLHLHRxx 0 1 1�3 5 �0 3 6 6�8 0 3�6�6 8 � � �217 HLHRHNxx 0�1 0 1�2�2 3 4 0�1 � � �218 HNHRHLxx 0�1 0 1�2�2�3 4 0�1 � � �219 HLHNxRHNx 0�1�2�3 0 1 4 5 5 8 0 2 5�6 7�9 � � �220 HNHLxRHNx 0�1�2�3 0�1 4 5 5 8 �0�1 3�8�9�9 � � �221 HNHLHNxRx 0�1�2�3 0�1 4 5 5 8 �0�1�3�8�9�9 � � �222 HNHNHLxRx 0�1�2�3 0 1 4 5 5 8 0 2 5�6 7�9 � � �223 HHRxRHNx 0�1 0 1 �0�1 2 2�3�4 � � �224 HNHHRxRx 0�1 0�1 �0�1 �0�1 �0�1 �0�1225 HNHRHxRx 0�1 0 1 �0�1 2 2 3�4 � � �226 HRHHNxRx 0�1�3 5 0�1�2�2 4�6�6 8 �0�1 3 6 6�8 � � �227 HRHNHxRx 0�1�3 5 0 1 3�6�6 8 �0 1 2 2�4 6 6�8 � � �228 HHNxRHRx 0�1�3 5 0 1�3�6�6 8 �0 1 2 2�4 6 6�8 � � �229 HNHxRHRx 0�1�3 5 0�1�2�2 4�6�6 8 �0�1�3 6 6�8 � � �230 HRHNxRHNxR 0�1 0 1�2�2 3 4 0 1 � � �231 HNHRHNxRxR 0�1 0 1 0�1 0 1 0 1 0 1232 HNHNHRxRxR 0�1 0 1�2�2�3 4 0 1 � � �233 HHLxRHNxR 0�1�3�4 0 1�2�2 4 8 9 9 0 1 4 5 5 8 � � �234 HLHxRHNxR 0�1�3�4 0 1�3 8 9 9 0�1 4 5 5 8 � � �235 HNHHLxRxR 0�1�3�4 0 1 3 8 9 9 0�1 4 5 5 8 � � �236 HNHLHxRxR 0�1�3�4 0 1�2�2 4 8 9 9 0 1 4 5 5 8 � � �237 HRHRHNxxR 0�1�3�4 0 1 3 8 9 9 �0�1�4�5�5�8 � � �238 HRHNHRxxR 0�1�3�4 0 1�2�2 4 8 9 9 �0 1�4�5�5�8 � � �239 HNHRHRxxR 0�1�3�4 0 1�3 8 9 9 �0�1�4�5�5�8 � � �240 HHNxRHNxR 0 1 1 �0 2 2�3�4 0�2�2 3 4 � � �



49table of the 360 onjugated ubesand their extension termspage 5-of-6: (241-300)No. CUBE S R L M A Z241 HNHHNxRxR 0 1 1 �0�1�1 0 1 1 �0�1�1 �0�1�1 �0�1�1242 HNHNHxRxR 0 1 1 �0 2 2 3�4 0�2�2�3 4 � � �243 HLHHLxRx 0 1 1 0 0 1 1 0 0 0244 HLHLHxRx 0 1 1 0�2�2 3 4 0 � � �245 HHLxRHLx 0 1 1 0�2�2�3 4 0 � � �246 HLHRHNxRx 0 1 1�3�4 0�3 8 9 9 0 1 1 4 5 5 8 � � �247 HLHNHRxRx 0 1 1�3�4 0�2�2 4 8 9 9 0 4 5 5 8 � � �248 HRHNxRHLx 0 1 1�3�4 0�2�2 4 8 9 9 0 4 5 5 8 � � �249 HNHRxRHLx 0 1 1�3�4 0 3 8 9 9 0 1 1 4 5 5 8 � � �250 HLHLHLxx 0 1 1�2 3�4 5 0 4 5 5�6�6�8 9 9 �0�4�5�5 6 6 8�9�9 � � �251 HRHNxRHNx 0�1 �0�1 2 2�3�4 0 1 � � �252 HNHRHNxRx 0�1 �0�1 0�1 �0�1 �0�1 �0�1253 HNHNHRxRx 0�1 �0�1 2 2 3�4 0 1 � � �254 HHLxRHNx 0�1�3�4 0 2 5�6 7�9 0 1 4 5 5 8 � � �255 HLHxRHNx 0�1�3�4 �0�1 3�8�9�9 0�1 4 5 5 8 � � �256 HNHHLxRx 0�1�3�4 �0�1�3�8�9�9 0�1 4 5 5 8 � � �257 HNHLHxRx 0�1�3�4 0 2 5�6 7�9 0 1 4 5 5 8 � � �258 HLHHNxRx 0�1�3 5 �0�1 3 6 6�8 0�1�2�2 4�6�6 8 � � �259 HLHNHxRx 0�1�3 5 �0 1 2 2�4 6 6�8 0 1 3�6�6 8 � � �260 HHNxRHLx 0�1�3 5 �0 1 2 2�4 6 6�8 0 1�3�6�6 8 � � �261 HNHxRHLx 0�1�3 5 �0�1�3 6 6�8 0�1�2�2 4�6�6 8 � � �262 HHNxRHNx 0 1 1 0�2�2 3 4 0�2�2 3 4 � � �263 HRHHRxxR 0�1�2�3 �0 1�4�5�5�8 0 1�2�2 4 8 9 9 � � �264 HNHNHxRx 0 1 1 0�2�2�3 4 0�2�2�3 4 � � �265 HHRHRxRxR 0 1 1�2 3�4 5 �0�4�5�5 6 6 8�9�9 0 4 5 5�6�6�8 9 9 � � �266 HRHHRxRxR 0 1 1�2�3 �0�1�1�4�5�5�8 0�3 8 9 9 � � �267 HRHRHxRxR 0 1 1�2�3 �0�4�5�5�8 0�2�2 4 8 9 9 � � �268 HHRxRHRxR 0 1 1�2�3 �0�4�5�5�8 0�2�2 4 8 9 9 � � �269 HRHxRHRxR 0 1 1�2�3 �0�1�1�4�5�5�8 0 3 8 9 9 � � �270 HRHRxRHxR 0 1 1�2 3�4 5 �0�4�5�5 6 6 8�9�9 0 4 5 5�6�6�8 9 9 � � �271 HRHRHRxxR 0 1 1�2 3�4 5 0 4 5 5�6�6�8 9 9 0 4 5 5�6�6�8 9 9 � � �272 HHLHLxRxR 0 1 1�3 5 �0 3 6 6�8 0�3�6�6 8 � � �273 HRHLHNxRxR 0 1 1 �0�1�1 0 �0 �0 �0274 HRHNHLxRxR 0 1 1 �0 0�2�2 3 4 � � �275 HLHNxRHRxR 0 1 1 �0 0�2�2�3 4 � � �276 HLHLxRHxR 0 1 1�3 5 �0�3 6 6�8 0 3�6�6 8 � � �277 HRHRHLxxR 0 1 1�3 5 �0�3 6 6�8 �0 3 6 6�8 � � �278 HRHLHRxxR 0 1 1�3 5 �0�1�1 2 2�4 6 6�8 �0�1�1 2 2�4 6 6�8 � � �279 HLHRHRxxR 0 1 1�3 5 �0 3 6 6�8 �0�3 6 6�8 � � �280 HHRHLxRxR 0 1 1�3 5 0 1 1�2�2 4�6�6 8 �0 3 6 6�8 � � �281 HRHHLxRxR 0 1 1�3�4 0�2�2 4 8 9 9 �0�4�5�5�8 � � �282 HHLHRxRxR 0 1 1�3 5 0�3�6�6 8 �0�1�1 2 2�4 6 6�8 � � �283 HRHLHxRxR 0 1 1�3�4 0 3 8 9 9 �0�1�1�4�5�5�8 � � �284 HLHHRxRxR 0 1 1 0 �0 2 2 3�4 � � �285 HLHRHxRxR 0 1 1 0 1 1 �0 �0 �0 �0286 HRHxRHLxR 0 1 1 0 �0 2 2�3�4 � � �287 HHLxRHRxR 0 1 1�3�4 0�3 8 9 9 �0�1�1�4�5�5�8 � � �288 HRHLxRHxR 0 1 1�3 5 0 3�6�6 8 �0�1�1 2 2�4 6 6�8 � � �289 HLHxRHRxR 0 1 1�3�4 0�2�2 4 8 9 9 �0�4�5�5�8 � � �290 HLHRxRHxR 0 1 1�3 5 0 1 1�2�2 4�6�6 8 �0�3 6 6�8 � � �291 HRHRHNxRxR 0 1 1 0�2�2�3 4 �0 � � �292 HRHNHRxRxR 0 1 1 0 �0�1�1 �0 �0 �0293 HLHLHNxRxR 0 1 1�2�3 0 4 5 5 8 �0 2 2�4�8�9�9 � � �294 HLHNHLxRxR 0 1 1�2�3 0 1 1 4 5 5 8 �0�3�8�9�9 � � �295 HLHNxRHLxR 0 1 1�2�3 0 1 1 4 5 5 8 �0 3�8�9�9 � � �296 HNHLxRHLxR 0 1 1�2�3 0 4 5 5 8 �0 2 2�4�8�9�9 � � �297 HNHRxRHRxR 0 1 1 0�2�2 3 4 �0 � � �298 HRHLHLxxR 0 1 1�3 5 0 3�6�6 8 0�3�6�6 8 � � �299 HLHRHLxxR 0 1 1�3 5 0 1 1�2�2 4�6�6 8 0 1 1�2�2 4�6�6 8 � � �300 HLHLHRxxR 0 1 1�3 5 0�3�6�6 8 0 3�6�6 8 � � �



50table of the 360 onjugated ubesand their extension termspage 6-of-6: (301-360)No. CUBE S R L M A Z301 HRHHNxRxR 0�1�3 5 �0 1 2 2�4 6 6�8 �0�1 3 6 6�8 � � �302 HRHNHxRxR 0�1�3 5 �0�1�3 6 6�8 �0 1 2 2�4 6 6�8 � � �303 HHNxRHRxR 0�1�3 5 �0�1 3 6 6�8 �0 1 2 2�4 6 6�8 � � �304 HNHxRHRxR 0�1�3 5 �0 1 2 2�4 6 6�8 �0�1�3 6 6�8 � � �305 HLHHLxRxR 0 1 1 �0 0 1 1 �0 �0 �0306 HLHLHxRxR 0 1 1 �0 2 2�3�4 0 � � �307 HHLxRHLxR 0 1 1 �0 2 2 3�4 0 � � �308 HLHRHNxRxR 0 1 1�3�4 �0 3�8�9�9 0 1 1 4 5 5 8 � � �309 HLHNHRxRxR 0 1 1�3�4 �0 2 2�4�8�9�9 0 4 5 5 8 � � �310 HRHNxRHLxR 0 1 1�3�4 �0 2 2�4�8�9�9 0 4 5 5 8 � � �311 HNHRxRHLxR 0 1 1�3�4 �0�3�8�9�9 0 1 1 4 5 5 8 � � �312 HLHLHLxxR 0 1 1�2 3�4 5 �0�4�5�5 6 6 8�9�9 �0�4�5�5 6 6 8�9�9 � � �313 HLHHNxRxR 0�1�3 5 0 1�3�6�6 8 0�1�2�2 4�6�6 8 � � �314 HLHNHxRxR 0�1�3 5 0�1�2�2 4�6�6 8 0 1 3�6�6 8 � � �315 HHNxRHLxR 0�1�3 5 0�1�2�2 4�6�6 8 0 1�3�6�6 8 � � �316 HNHxRHLxR 0�1�3 5 0 1 3�6�6 8 0�1�2�2 4�6�6 8 � � �317 HRHRHRxRx 0�1�2�3 �0�1�4�5�5�8 0 1 3 8 9 9 � � �318 HRHRxRHRx 0�1�2�3 �0�1�4�5�5�8 0 1�3 8 9 9 � � �319 HRHLHLxRx 0�1�3�4 �0�1 3�8�9�9 0 1 4 5 5 8 � � �320 HLHLxRHRx 0�1�3�4 �0�1�3�8�9�9 0 1 4 5 5 8 � � �321 HLHLxRHNxR 0 1 1�2 3�4 5 0 4 5 5�6�6�8 9 9 �0�4�5�5 6 6 8�9�9 � � �322 HNHLHLxRxR 0 1 1�2 3�4 5 0 4 5 5�6�6�8 9 9 �0�4�5�5 6 6 8�9�9 � � �323 HRHRxRHNxR 0 1 1�3 5 0�3�6�6 8 �0 3 6 6�8 � � �324 HNHRHRxRxR 0 1 1�3 5 0 3�6�6 8 �0�3 6 6�8 � � �325 HRHRHLxRx 0�1 0 1�2�2�3 4 �0�1 2 2�3�4 � � �326 HRHLHRxRx 0�1 0�1 �0 1 �0 1 �0 1 �0 1327 HLHRHRxRx 0�1�3�4 0 1 3 8 9 9 �0�1�4�5�5�8 � � �328 HRHRxRHLx 0�1�3�4 0 1�3 8 9 9 �0�1�4�5�5�8 � � �329 HLHRxRHRx 0�1 0 1�2�2 3 4 �0�1 2 2 3�4 � � �330 HLHLHLxRx 0�1�2�3 0 1 4 5 5 8 �0�1 3�8�9�9 � � �331 HLHLxRHLx 0�1�2�3 0 1 4 5 5 8 �0�1�3�8�9�9 � � �332 HLHLxRHNx 0 1 1�2 3�4 5 �0�4�5�5 6 6 8�9�9 �0�4�5�5 6 6 8�9�9 � � �333 HNHLHLxRx 0 1 1�2 3�4 5 �0�4�5�5 6 6 8�9�9 �0�4�5�5 6 6 8�9�9 � � �334 HRHRxRHNx 0 1 1�3 5 �0 3 6 6�8 �0 3 6 6�8 � � �335 HNHRHRxRx 0 1 1�3 5 �0�3 6 6�8 �0�3 6 6�8 � � �336 HRHLxRHNxR 0 1 1�3 5 �0�1�1 2 2�4 6 6�8 0�3�6�6 8 � � �337 HLHRxRHNxR 0 1 1�3 5 �0 3 6 6�8 0 1 1�2�2 4�6�6 8 � � �338 HNHRHLxRxR 0 1 1�3 5 �0�3 6 6�8 0 1 1�2�2 4�6�6 8 � � �339 HNHLHRxRxR 0 1 1�3 5 �0�1�1 2 2�4 6 6�8 0 3�6�6 8 � � �340 HLHRHLxRx 0�1 �0 1 0�1 �0 1 �0 1 �0 1341 HLHLHRxRx 0�1 �0�1 2 2�3�4 0 1�2�2�3 4 � � �342 HRHLxRHLx 0�1 �0�1 2 2 3�4 0 1�2�2 3 4 � � �343 HRHLxRHNx 0 1 1�3 5 0 1 1�2�2 4�6�6 8 0�3�6�6 8 � � �344 HLHRxRHNx 0 1 1�3 5 0�3�6�6 8 0 1 1�2�2 4�6�6 8 � � �345 HNHRHLxRx 0 1 1�3 5 0 3�6�6 8 0 1 1�2�2 4�6�6 8 � � �346 HNHLHRxRx 0 1 1�3 5 0 1 1�2�2 4�6�6 8 0 3�6�6 8 � � �347 HRHRHRxRxR 0�1�2�3 0 1 4 5 5 8 0 1 3 8 9 9 � � �348 HRHRxRHRxR 0�1�2�3 0 1 4 5 5 8 0 1�3 8 9 9 � � �349 HRHLHLxRxR 0�1�3�4 0 1�3 8 9 9 0 1 4 5 5 8 � � �350 HLHLxRHRxR 0�1�3�4 0 1 3 8 9 9 0 1 4 5 5 8 � � �351 HRHRHLxRxR 0�1 �0�1 2 2 3�4 �0�1 2 2�3�4 � � �352 HRHLHRxRxR 0�1 �0 1 �0 1 0�1 0�1 0�1353 HLHRHRxRxR 0�1�3�4 �0�1�3�8�9�9 �0�1�4�5�5�8 � � �354 HRHRxRHLxR 0�1�3�4 �0�1 3�8�9�9 �0�1�4�5�5�8 � � �355 HLHRHLxRxR 0�1 0�1 0�1 0�1 0�1 0�1356 HLHLHLxRxR 0�1�2�3 �0�1�4�5�5�8 �0�1 3�8�9�9 � � �357 HLHLxRHLxR 0�1�2�3 �0�1�4�5�5�8 �0�1�3�8�9�9 � � �358 HLHRxRHRxR 0�1 �0�1 2 2�3�4 �0�1 2 2 3�4 � � �359 HLHLHRxRxR 0�1 0 1�2�2 3 4 0 1�2�2�3 4 � � �360 HRHLxRHLxR 0�1 0 1�2�2�3 4 0 1�2�2 3 4 � � �



51explanation of the table: The �rst olumn just labels the ube with a number 1 � � � 360, with no.0 being theadjoint Hy, whih is a ombination of ubes. The seond olumn shows the formula for the ube in rpn notation. Theremaining olumns give the salar omponent, s, and the �ve r-l-m-a-z vetor sub-parts of the 15-dim vetor partof the hexpe number for the ube. The omponents shown are given in terms of the weights, wk , and the di�erenesfrom those weights. The weights are the omponents of the adjoint, and are represented by a 0 in eah olumn. Thedi�erenes from these weights are represented by other numbers 1; 2; : : : ; 9, whih are just labels again that identifypartiular expression terms to be inluded. Now, although there are 360 unique ubes, many of the salar ompo-nents, s, of these ubes, are the same. In fat, all the salar omponents have extension terms that are themselvesonstruted from only one to �ve distint terms. So, we identify these parts and give them the labels 1; 2; 3; 4; 5. Thesemust be added to the adjoint weight, 0, to onstrut the omponent for the ube. If one of these expressions is to besubtrated from the weight instead, then a minus sign is shown in the table just above the numeri label. So, �2 meanssubtrat the term with label 2. The di�erenes are originally obtained by adding or subtrating the adjoint from theube, then if subtrating the adjoint produes the smallest extension term we represent the ube omponent with,+0+ � � � , but if adding the adjoint produes the smallest extension term, we then represent the ube omponent with,� 0 + � � � , instead. Consequently, some 0s have a minus bar above, �0 , to indiate the weight is to be inluded with aminus sign pre�x. Not all omponents an be redued to simple terms, so most of the m-a-z omponents are left outof the table, and a dash � appears in their loation instead. The right and left hand quaternion omponents are allgiven, however, and need upto 9 sub-terms in our partiular sheme{the salar omponent would atually require6 sub-terms if we followed the `add or subtrat the adjoint and hoose the least' method, but by subtrating theadjoint only we redue the ount there to 5. There is a little ambiguity in this method, sine measuring the lengthof an extension term is dependent on whether we ount AAA + AAA as two terms or one 2.AAA term. Generally, weemploy the latter. The extension term for eah omponent on a ube is made up of several expression terms, but inthe table shown, eah of the r-l-m-a-z olumns represent the 3-vetor sub-part of the ube, and so represent a groupof three omponents with their three extension terms simultaneously. This organization is possible beause these r-l-m-a-z vary as 5 distint parts, and not 15 distint parts, in the alternation of onjugations produing the set of ubes.Using this table we may then onstrut the various possible unique quaternion expansions for the adjoint anddeterminant. It is not neessary to know the de�nitions of the parts of the extension terms, but these are given inanother table below for referene{All we need is the numeri labels and the signs for these terms, whih are given above.The 360 ubes are paritioned into exatly 10 unequal sets by salar omponent alone. The 10 di�erent possiblevalues of the salar, S( � ), of a onjugated ube, are;S0 = 0�1 = +0� 1 = +w0 � s1S1 = 01 1 = +0 + 1 + 1 = +w0 + 2s1S2 = 0�1�2�3 = +0� 1� 2� 3 = +w0 � s1 � s2 � s3S3 = 01 1�2�3 = +0 + 1 + 1� 2� 3 = +w0 + 2s1 � s2 � s3S4 = 0�1�3�4 = +0� 1� 3� 4 = +w0 � s1 � s3 � s4S5 = 01 1�3�4 = +0 + 1 + 1� 3� 4 = +w0 + 2s1 � s3 � s4S6 = 0�1�3 5 = +0� 1� 3 + 5 = +w0 � s1 � s3 + s5S7 = 01 1�3 5 = +0 + 1 + 1� 3 + 5 = +w0 + 2s1 � s3 + s5S8 = 0�1�2 3�4 5 = +0� 1� 2 + 3� 4 + 5 = +w0 � s1 � s2 + s3 � s4 + s5S9 = 01 1�2 3�4 5 = +0 + 1 + 1� 2 + 3� 4 + 5 = +w0 + 2s1 � s2 + s3 � s4 + s5The extension term, on eah of the 10 salar values, Sj ; j = 0; 1; ::; 9, is onstruted from a partiular ombinationof the �ve part-terms, sk; k = 1; 2; 3; 4; 5: In this indexing sheme, the weight term an be thought of as the zerothpart-term, i.e. s0 = w0; a similar label and index sheme then follows for the r-l-m-a-z, where r0 is the 3-vetorweight term, r0 = wR1i + wR2j + wR3k, et..In this way, we an translate the odes in the table of ubes intoorresponding arithmeti expressions representing the omponent or vetor sub-part of the hexpe number. The goal isto extrat the s0, or r0 et.., term, by making suitable ombinations of ubes. For example, our previous onstrution(A-29) ombined the triple onjugated ube (h�Rh)�Lh�R, whih has form, S1 = w0 +2s1, with the double onjugatedube h�Rhh�L, with form, S0 = w0 � s1, to �nd, w0 = s0 = (2S0+S1)=3. But, any two suh ubes, taken one from S0and one from S1, an be used to onstrut w0. In fat, our triple onjugated ube, (h�Rh)�Lh�R, whih has rpn form,hrhxlhrx, is not inluded diretly in the ube table. It has an l just to the right of the inside x, and in our hosensymbol sheme only r an appear there. This ube is equivelent to another ube, ((h�Rh)�)�Rh�R = (h�h�L)�Rh�R,whih is a quadonjugated ube with rpn form, hnhlxrhrx, whih is, again, not inluded either, beause it isin that group of 24 that by double pair fator swap have dupliates that are already in the table. The ube isultimately equivalent to h�R(h�Lh�)�R, shown in the table of 24 dupliates on page[44℄ in the 3rd row, this has rpnform hrhlhnxrx, and appears as no.166 in the ube table. All the fator swap ubes with double h before x, i.e.h.h.x.h.x. are disarded in favor of their dupliates ontaining triple h before x, i.e. h.h.h.x.x. ; in this table.



52table of extension terms:r0 = wR1IR + wR2JR +wR3KRr1 = IR � 4 � (+hL1hM2hM3 + hL2hA1hA2 + hL3hZ1hZ3 � hL1hA1hZ1 � hL2hM3hZ3 � hL3hM2hA2)+ JR � 4 � (+hL1hZ1hZ2 + hL2hM1hM3 + hL3hA2hA3 � hL1hM3hA3 � hL2hA2hZ2 � hL3hM1hZ1)+KR � 4 � (+hL1hA1hA3 + hL2hZ2hZ3 + hL3hM1hM2 � hL1hM2hZ2 � hL2hM1hA1 � hL3hA3hZ3)r2 = IR � 2 � (+hR1hM2hM2 + hR1hM3hM3 + hR1hA1hA1 + hR1hA2hA2 + hR1hZ1hZ1 + hR1hZ3hZ3)+ JR � 2 � (+hR2hM1hM1 + hR2hM3hM3 + hR2hA2hA2 + hR2hA3hA3 + hR2hZ1hZ1 + hR2hZ2hZ2)+KR � 2 � (+hR3hM1hM1 + hR3hM2hM2 + hR3hA1hA1 + hR3hA3hA3 + hR3hZ2hZ2 + hR3hZ3hZ3)r3 = IR � 4 � (+hR3hL1hZ3 + hR3hL2hM2 + hR3hL3hA1 � hR2hL1hA2 � hR2hL2hZ1 � hR2hL3hM3)+ JR � 4 � (+hR1hL1hA2 + hR1hL2hZ1 + hR1hL3hM3 � hR3hL1hM1 � hR3hL2hA3 � hR3hL3hZ2)+KR � 4 � (+hR2hL1hM1 + hR2hL2hA3 + hR2hL3hZ2 � hR1hL1hZ3 � hR1hL2hM2 � hR1hL3hA1)r4 = IR � 4 � (+hR2hM1hZ3 + hR2hM2hA3 + hR2hA1hZ2 + hR3hM1hA2 + hR3hM3hZ2 + hR3hA3hZ1)+ JR � 4 � (+hR1hM1hZ3 + hR1hM2hA3 + hR1hA1hZ2 + hR3hM2hZ1 + hR3hM3hA1 + hR3hA2hZ3)+KR � 4 � (+hR1hM1hA2 + hR1hM3hZ2 + hR1hA3hZ1 + hR2hM2hZ1 + hR2hM3hA1 + hR2hA2hZ3)r5 = IR � 2 � (+hR1hM1hM1 + hR1hA3hA3 + hR1hZ2hZ2)+ JR � 2 � (+hR2hM2hM2 + hR2hA1hA1 + hR2hZ3hZ3)+KR � 2 � (+hR3hM3hM3 + hR3hA2hA2 + hR3hZ1hZ1)r6 = IR � 2 � (+hR1hL1hL1 + hR1hL2hL2 + hR1hL3hL3)+ JR � 2 � (+hR2hL1hL1 + hR2hL2hL2 + hR2hL3hL3)+KR � 2 � (+hR3hL1hL1 + hR3hL2hL2 + hR3hL3hL3)r7 = IR � 2 � (+hR1hR1hR1 + hR1hR2hR2 + hR1hR3hR3)+ JR � 2 � (+hR1hR1hR2 + hR2hR2hR2 + hR2hR3hR3)+KR � 2 � (+hR1hR1hR3 + hR2hR2hR3 + hR3hR3hR3)r8 = IR � 4 � (+h0hL1hM1 + h0hL2hA3 + h0hL3hZ2)+ JR � 4 � (+h0hL1hZ3 + h0hL2hM2 + h0hL3hA1)+KR � 4 � (+h0hL1hA2 + h0hL2hZ1 + h0hL3hM3)r9 = IR � 2 � (+h0h0hR1) + JR � 2 � (+h0h0hR2) +KR � 2 � (+h0h0hR3)l0 = wL1IL + wL2JL + wL3KLl1 = IL � 4 � (+hR1hM2hM3 + hR2hZ1hZ2 + hR3hA1hA3 � hR1hA1hZ1 � hR2hM3hA3 � hR3hM2hZ2)+ JL � 4 � (+hR1hA1hA2 + hR2hM1hM3 + hR3hZ2hZ3 � hR1hM3hZ3 � hR2hA2hZ2 � hR3hM1hA1)+KL � 4 � (+hR1hZ1hZ3 + hR2hA2hA3 + hR3hM1hM2 � hR1hM2hA2 � hR2hM1hZ1 � hR3hA3hZ3)l2 = IL � 2 � (+hL1hM2hM2 + hL1hM3J + hL1hA1hA1 + hL1hA3hA3 + hL1hZ1hZ1 + hL1hZ2hZ2)+ JL � 2 � (+hL2hM1hM1 + hL2hM3J + hL2hA1hA1 + hL2hA2hA2 + hL2hZ2hZ2 + hL2hZ3hZ3)+KL � 2 � (+hL3hM1hM1 + hL3hM2hM2 + hL3hA2hA2 + hL3hA3hA3 + hL3hZ1hZ1 + hL3hZ3hZ3)l3 = IL � 4 � (+hR1hL2hZ2 + hR2hL2hA1 + hR3hL2hM3 � hR1hL3hA3 � hR2hL3hM2 � hR3hL3hZ1)+ JL � 4 � (+hR1hL3hM1 + hR2hL3hZ3 + hR3hL3hA2 � hR1hL1hZ2 � hR2hL1hA1 � hR3hL1hM3)+KL � 4 � (+hR1hL1hA3 + hR2hL1hM2 + hR3hL1hZ1 � hR1hL2hM1 � hR2hL2hZ3 � hR3hL2hA2)l4 = IL � 4 � (+hL2hM1hA3 + hL2hM2hZ3 + hL2hA2hZ1 + hL3hM1hZ2 + hL3hM3hA2 + hL3hA1hZ3)+ JL � 4 � (+hL1hM1hA3 + hL1hM2hZ3 + hL1hA2hZ1 + hL3hM2hA1 + hL3hM3hZ1 + hL3hA3hZ2)+KL � 4 � (+hL1hM1hZ2 + hL1hM3hA2 + hL1hA1hZ3 + hL2hM2hA1 + hL2hM3hZ1 + hL2hA3hZ2)l5 = IL � 2 � (+hL1hM1hM1 + hL1hA2hA2 + hL1hZ3hZ3)+ JL � 2 � (+hL2hM2hM2 + hL2hA3hA3 + hL2hZ1hZ1)+KL � 2 � (+hL3hM3J + hL3hA1hA1 + hL3hZ2hZ2)l6 = IL � 2 � (+hR1hR1hL1 + hR2hR2hL1 + hR3hR3hL1)+ JL � 2 � (+hR1hR1hL2 + hR2hR2hL2 + hR3hR3hL2)+KL � 2 � (+hR1hR1hL3 + hR2hR2hL3 + hR3hR3hL3)l7 = IL � 2 � (+hL1hL1hL1 + hL1hL2hL2 + hL1hL3hL3)+ JL � 2 � (+hL1hL1hL2 + hL2hL2hL2 + hL2hL3hL3)+KL � 2 � (+hL1hL1hL3 + hL2hL2hL3 + hL3hL3hL3)l8 = IL � 4 � (+h0hR1hM1 + h0hR2hZ3 + h0hR3hA2)+ JL � 4 � (+h0hR1hA3 + h0hR2hM2 + h0hR3hZ1)+KL � 4 � (+h0hR1hZ2 + h0hR2hA1 + h0hR3hM3)l9 = IL � 2 � (+h0h0hL1) + JL � 2 � (+h0h0hL2) +KL � 2 � (+h0h0hL3)



53table of extension terms: ont'ds0 = w0s1 = +4 � (hM1hM2hM3 + hA1hA2hA3 + hZ1hZ2hZ3 � hM1hA1hZ1 � hM2hA2hZ2 � hM3hA3hZ3)s2 = +4 � (h0hL1hL1 + h0hL2hL2 + h0hL3hL3)s3 = +4 � (hR1hL1hM1 + hR1hL2hA3 + hR1hL3hZ2 + hR2hL1hZ3 + hR2hL2hM2 + hR2hL3hA1 + hR3hL1hA2 + hR3hL2hZ1 + hR3hL3hM3)s4 = +4 � (h0hR1hR1 + h0hR2hR2 + h0hR3hR3)s5 = +4 � (h0hM1hM1 + h0hM2hM2 + h0hM3hM3 + h0hA1hA1 + h0hA2hA2 + h0hA3hA3 + h0hZ1hZ1 + h0hZ2hZ2 + h0hZ3hZ3)s6 = +2 � (h0h0h0)m0 = wM1IM + wM2JM + wM3KMm1 = IM � 4 � (+h0hM2hM3 + hR2hL3hZ1 + hR3hL2hA1 � h0hA1hZ1 � hR2hL2hM3 � hR3hL3hM2)+ JM � 4 � (+h0hM1hM3 + hR1hL3hA2 + hR3hL1hZ2 � h0hA2hZ2 � hR1hL1hM3 � hR3hL3hM1)+KM � 4 � (+h0hM1hM2 + hR1hL2hZ3 + hR2hL1hA3 � h0hA3hZ3 � hR1hL1hM2 � hR2hL2hM1)a0 = wA1IA +wA2JA + wA3KAa1 = IA � 4 � (+h0hA2hA3 + hR1hL1hZ1 + hR3hL2hM1 � h0hM1hZ1 � hR1hL2hA2 � hR3hL1hA3)+ JA � 4 � (+h0hA1hA3 + hR1hL3hM2 + hR2hL2hZ2 � h0hM2hZ2 � hR1hL2hA1 � hR2hL3hA3)+KA � 4 � (+h0hA1hA2 + hR2hL1hM3 + hR3hL3hZ3 � h0hM3hZ3 � hR2hL3hA2 � hR3hL1hA1)z0 = wZ1IZ +wZ2JZ +wZ3KZz1 = IZ � 4 � (+h0hZ2hZ3 + hR1hL1hA1 + hR2hL3hM1 � h0hM1hA1 � hR1hL3hZ3 � hR2hL1hZ2)+ JZ � 4 � (+h0hZ1hZ3 + hR2hL2hA2 + hR3hL1hM2 � h0hM2hA2 � hR2hL1hZ1 � hR3hL2hZ3)+KZ � 4 � (+h0hZ1hZ2 + hR1hL2hM3 + hR3hL3hA3 � h0hM3hA3 � hR1hL3hZ1 � hR3hL2hZ2)orresponding ubes: A pair of ubes are alled orresponding ubes if one is obtained from the other byipping the hand of all the onjugates. These two ubes must have similar extension term part sequenes in theiropposite hand vetors. For example, hhhxxr and hhhxxl , are diret orresponding ubes. The latter does notexist diretly in the table, but is equivalent to hnhnhnxxr , whih is in the table. So, hhhxxr and hnhnhnxxr ,are indiret orresponding ubes. These appear as no.2 and no.8, respetively, in the ube table. The r-olumnentry for the former, then, must be the same label sequene as the l-olumn entry for the latter; and, visa versa,the r-olumn entry for the latter must also be the same label sequene as the l-olumn entry for the former. It isneessary to properly align the de�nitions of the extension terms so that the labels attah to orresponding parts onthe r and l oeÆients for this observation to beome manifest.No. CUBE S R L M A Z2 HHHxxR 0�1�2 3�4 5 0�2�5 6 7 8 8�9 0 1 4 5 5�6�6�8 9 9 � � �8 HNHNHNxxR 0�1�2 3�4 5 0 1 4 5 5�6�6�8 9 9 0�2�5 6 7 8 8�9 � � �166 HRHLHNxRx 0 1 1 0 1 1 0 0 0 0243 HLHHLxRx 0 1 1 0 0 1 1 0 0 0113 HNHHNxRx 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1355 HLHRHLxRxR 0�1 0�1 0�1 0�1 0�1 0�1We an then use this to double hek the entries in the table. These two sequenes are 0�2�5 6 7 8 8�9 and 0 1 4 5 5�6�6�8 9 9 ,respetively. Notie, also, that our two initially seleted ubes, (h�Rh)�Lh�R and (h�Lh)�Rh�L , de�ned in C-1 andC-2, on whih we onstruted our quaternion expansions, are orresponding ubes. In rpn these are hrhxlhrx andhlhxrhlx, whih, in the table, are represented by the indiret orresponding pair, hrhlhnxrx and hlhhlxrx, withubes no.166 and no.243. These ubes tend to have omplementary entries in their omponent parts that failitatethe onstrution of quaternion expansions. In 360, are 136 pairs orresponding, and 88 self-orresponding ubes.onversions of orresponding ubes�!HHHxxR HHHxxL (hhh)�L ((hhh)�)�R (h�h�h�)�R HNHNHNxxRHNHNHNxxR HNHNHNxxL (h�h�h�)�L ((h�h�h�)�)�R (hhh)�R HHHxxRHRHLHNxRx HLHRHNxLx h�L(h�Rh�)�L h�L((h�Rh�)�)�R h�L(hh�L)�R HLHHLxRxHLHHLxRx HRHHRxLx h�R(hh�R)�L h�R((hh�R)�)�R h�R(h�Lh�)�R HRHLHNxRxHNHHNxRx HNHHNxLx h�(hh�)�L h�((hh�)�)�R h�(hh�)�R HNHHNxRxHLHRHLxRxR HRHLHRxLxL (h�R(h�Lh�R)�L)�L ((h�R(h�Lh�R)�L)�)�R ((h�Lh�R)�Rh�L)�R HLHRxRHLxR



54From the ube table, we �nd two ubes that are even more intersting than our previous seletions. Cubes no.113and no.355 have simple extensions that are easily made to vanish by ombining twie the latter with one times theformer; i.e. 3 �Hy = C113+2 �C355 . Looking at the onversions table, we see that these are both self-orrespondingubes: hnhhnxrx ! hnhhnxrx, under onversion, and, hlhrhlxrxr ! hlhrxrhlxr. But, from the last row ofthe table of 24 fator swap dupliates on page[44℄, we see this latter is just the dupliate of hlhrhlxrxr one again.So, the C355 onverts bak to itself. We an then write the adjoint matrix as the sum of 2 ubes, instead of 12 ubes!Hy = 13 �H�(HH�)�R + 23 � (H�L(H�RH�L)�R)�R (A-53)det(H) = 13 �H�(HH�)�RH + 23 � (H�L(H�RH�L)�R)�RH (A-54)Here we ombine a trionjugated ube with a pentaonjugated ube. If we thought of the normal onjugate as twoonjugations, ( � )� = (( � )�L)�R , then, this solution an be interpreted as the ombination of two pentaonjugatedubes, in partial onjugates, instead.Hy = 13 � (H�L)�R(H(H�L)�R)�R + 23 � (H�L(H�RH�L)�R)�R (A-55)det(H) = 13 � (H�L)�R(H(H�L)�R)�RH + 23 � (H�L(H�RH�L)�R)�RH (A-56)At any rate, �ve is the maximum number of onjugations on a ube; so, it is interesting that the simplest solutionfound to date, ombining the fewest terms possible, involves the maximal onjugate. At �rst glane, it might seemodd that there are three r-onjugates, but only two l-onjugates, in these ubes. Why should the right-hand bemore prominant than the left? However, some r's an be exhanged for an l. For example, (h�L(h�Rh�L)�R)�R =((h�L(h�Rh�L)�R)�)�L = ((h�Rh�L)�Lh�R)�L, so now we have three l's and two r's. Again, (h�L(h�Rh�L)�R)�R =(h�L((h�Rh�L)�)�L)�R = (h�L(h�Rh�L)�L)�R, produing three l's and two r's. The pentaonjugated ube thereforehas two di�erent ways to onvert to triple left. It is just our established onvention to always selet the dupliate ubewith the right onjugate, i.e \xr" seleted over \xl", that the formulas appear this way. The triple onjugated ube hasone way to onvert to triple left in it's pseudo-pentaonjugation form, sine, h�(hh�)�R = h�((hh�)�)L = h�(hh�)�L,so we an write, (h�L)�R(h(h�L)�R)�R = (h�L)�R(h(h�L)�R)�L, also. With, h =PAiB0i, the two new ubes are foundto already have the required form, A�� A�A�� B�� B�B�� , whih we seek;h�(hh�)�R = �XAiB0i�� ��XAjB0j��XAkB0k����R = �XA�iB0�i ���XAjB0j��XA�kB0�k ���R= �XA�iB0�i ��XXAjA�kB0jB0�k ��R = �XA�iB0�i ��XXAkA�jB0jB0�k �= XXXA�iAkA�jB0�i B0jB0�k (A-57)2(h�L(h�Rh�L)�R)�R = 2 �XAiB0i��L ��XAjB0j��R �XAkB0k��L��R!�R= 2��XAiB0�i ���XA�jB0j��XAkB0�k ���R��R= 2��XAiB0�i ��XXA�jAkB0jB0�k ��R��R= 2��XAiB0�i ��XXA�kAjB0jB0�k ���R= 2�XXXAiA�kAjB0�i B0jB0�k ��R= 2XXX(AiA�kAj)�B0�i B0jB0�k= 2XXXA�jAkA�iB0�i B0jB0�k (A-58)and no further re-arrangement of parameters is required to put the numerator into this onvenient form. The maximumnumber of 1 � A�� A�A�� B�� B�B�� terms, ever required, is n3; see eqn (127). The minimum number of distint numeratorterms with general salar oeÆients, for arbitrary n, is (2n3�3n2+4n)=3, see eqn (144). In this �nal format, we mayalso now replae the PPP with a single P, where the sum is understood to be over the three subsript indiies,i; j; k, all ranging from 1 to n. In the text of this paper, we disuss how the quarti fator, B0�i B0jB0�k B0l, appearingnext, an be onverted into the pure right hand form, BlB�kBjB�i , in the formula for the determinant, see eqn (142).



55An hexpe inverse:\gilgamesh { the golden formula" Aj ; Bj 2 HR ; Bj 0 2 H L ; H � h; h�1 2 Xn:h = A1B1 0 + A2B2 0 + � � � + AnBn 0 = PAiBi 0 (A-59)\Gilgamesh was two-thirds god and one-third man, Enkidu was two-thirds animal and one-third man, this is thestory of them beoming hu-man together..."[18℄
h�1 = h�(hh�)�R + 2(h�L(h�Rh�L)�R)�Rh�(hh�)�Rh+ 2(h�L(h�Rh�L)�R)�Rh (A-60)
= P�A�iAkA�j + 2 � A�jAkA�i �Bi 0�Bj 0Bk 0�P�A�iAkA�jAl + 2 � A�jAkA�iAl�BlB�kBjB�i (A-61)quaternion expansion of the adjoint matrixHy = 13 � man + 23 � god (A-62)man = H�(HH�)�R (A-63)god = (H�L(H�RH�L)�R)�R (A-64)quaternion expansion of the matrix determinantdet(H) = 13 �H�(HH�)�RH + 23 � (H�L(H�RH�L)�R)�RH (A-65)how we found this solution: This formula is ertainly not obvious in any sense. Originally, when we wrestledwith this problem, it seemed intuitive that we should multiply by partial onjugates to ahieve the redution ofthe l-h-s of the linear problem to salar; hq̂ = Ĉ ! h�Rhq̂ = h�RĈ ! (h�Rh)�Lh�Rhq̂ = (h�Rh)�Lh�RĈ. Thisidea made alot of sense, sine the �rst multipliation step redues the l-h-s fator from two-hand quaternionto one-hand quaternion, whih is left handed in this ase, and we know how to invert the one-hand quaternion,so problem solved. We ould start out with either fator, h�R or h�L, the latter giving us the solution path,hq̂ = Ĉ ! h�Lhq̂ = h�LĈ ! (h�Lh)�Rh�Lhq̂ = (h�Lh)�Rh�LĈ , instead. But, this intuitive method only workedfor \one term" and \two term" linear problems. When we ame to the \three term" problem, we ouldn't solve itthis way. Yet, we knew the solution to the three term problem from our previous attaks on the problem using themethod of guessing a fator with free parameters that ould be later �xed to math the solution. The two ubes,(h�Rh)�Lh�R and (h�Lh)�Rh�L, now formed the starting point in the searh for solution. We had to start thinking



56about ombining fators, but how to guess the right ombinations? We then alulated the basis omponents ofthese hyperomplex numbers and ompared them to our previously alulated inverse, h�1, whih was alreadyknown in basis omponent format, through a rather tedious but straighforward matrix algebra. This gave us ourtable of 360 ubes. Initially, a bug in our symboli soure ode prevented us from seeing the right results for allthese ubes. But, we were really foused on that pair of ubes that started out working anyway, and the rest ofthe table was just an interesting exerise. We saw that these two ubes ould be easily ombined to math the15-dimensional vetor part of the numerator for that inverse, h�1, so the problem beame a matter of �ndingsuitable ubes to �t the salar omponent, w0. The double onjugated ube, h�Rhh�L, �t the bill, and was seletedto form that set of 3 ubes, that when onjugated into the four onjugate states, n r l , gave us the 12 �nalubes neessary to write the adjoint down in terms of a quaternion expansion. So, we had found the solution to thearbitrary n-term linear problem. Otober 27, 2007, was our sheduled date to release the paper with our results,that gave us enough time to write up the paper, and the 27th was a ube, 33, in perfet syn with the ubi expansions.However, on re-heking the un�nished paper the day before sheduled release, we notied something strangeabout our ube table. Some of the sequenes in the r-olumn were missing in the l-olumn. But, if we had theomplete universe of all possible onjugated ubes, then every sequene found in the r-olumn must also appearsomewhere in the l-olumn. So, either we had ounted the number of ubes inorretly, and there were more than360 ubes, or there was a bug in our soure ode that produed errors in the olumn output. On thinking aboutthis problem, we realised that by looking at the \orresponding ubes" we ould deide the issue, and this led usto easily �nd the bug in our soure ode. Now, however, we paid more attention to that ube table. Althoughthe solution we initally found did not depend on the table, and we even thought of just deleting the ube tablefrom the paper to save time, the results of the table were important in giving us the on�dene that all our otherwork was ok, sine every output was a veri�ation hek of the soure ode working orretly. So, we ouldn'tignore the table. Better to delay the paper. That's when we found \the Gilgamesh solution." Just 2 ubes, ouldaomplish the same task, where our previous solution required 12 ubes! But there was no logi to these two newubes. There was no intuition, built up from familiarity with the struggle of takling these linear problems, thatwould enable the mind to divine their onstrution aforehand. They just pop out like magi from a misellaneoussymboli omputation, with no analytial prepration in advane to warn the mathematial sientist that theymight be lurking out there somewhere, and so he should seek them out. In fat, our fous was on the ubes thathad the most isolated zeros 0s in their olumn entries, sine that represented a perfet math to those parts ofthe adjoint. But, these two ubes didn't math any omponent of the adjoint at all. Yet, their di�erenes o�-set eah other so perfetly, that we need only these two ubes, 1=3 of one and 2=3 the other, to write down the adjoint.It is possible that more interesting things might be revealed in the future when this ube table has been exploredfurther, and in greater depth. But, for the moment, this 2-ube solution is the reigning \king" of all the manyquaternion expansions of the adjoint matrix and the determinant. An intriguing observation is that Khufu's pyramid istrunated to the height of a ube, h3 = hhh = volume, and ontains several obvious referenes to the theme of \inversion"{e.g. inverta ube to obtain six �ve sided pyramids, eah base to a fae and apex at enter{Egyptian mythology enodes speial referene to theubesquare, in the Horus Eye 64 = 26, and the large sale number 106 depited by the Hieroglyph of a man kneeling and holdinghis right hand and left hand up to the heavens[19℄; ompare that the \inversion" of the four-dimensional `right-hand + left-hand'transformation matrix h =PAB0 involves the same motif of the square of the ube, AAA:BBB = A6 when B = A, i.e. the sixth powerof number is also involved in inversion. Do the pyramids and Egyptian mythology enode hints and lues to the mathematis of spaetime?Misellaneous Calulations.Theorem: (gh)� = h�g� 8 g; h;2 Xn.Proof: Every hexpe number, g; h 2 Xn, an be represented as the sum of r�l pair produts, so, using thetable of rules given on the �rst page;g = XAjB0j ; h = XCkD0k ; Aj ; Ck 2 HR ; B0j ; D0k 2 HL) (gh)� = ��XAjB0j� � �XCkD0k��� = �XXAjB0jCkD0k�� = �XXAjCkB0jD0k��= XX�AjCkB0jD0k�� = XX�AjCk�� �B0jD0k�� = XXC�kA�jD0�k B0�j (A-66)= XX�C�kD0�k � �A�jB0�j � = �XC�kD0�k ��XA�jB0�j � = �X(CkD0k)���X(AjB0j)��= �XCkD0k�� �XAjB0j�� = h�g� q.e.d.



57[PJ2℄ P.M. Jak Hexpentaquaternions: a two-hand quaternion algebra, Jan 29, 2006.[PJ3℄ P.M. Jak Quatro-Quaternions and the matrix representations of otonions, Jul 02, 2006.[WRH1℄ W. R. Hamilton Letures on Quaternions, 1853.[YT1℄ Tian, Y The equations ax� xb =  , ax� �xb =  , and �xax = b in quaternions., 2004. Southeast Asian Bulletin ofMathematis 28, 343-362.[1℄ As early as 1853, in his \Letures on Quaternions, " Hamilton writes \. . . for the solution of equations in quater-nions. . . very muh remains still to be done towards the attainment of anything approahing to perfetion in the estab-lishment of general methods for suh solutions of equations , and for quaternion elimination generally. But so far asregards equations of the first degree in quaternions, I have been for some years in possession of whatappears to me to be suh a general method of solution." [pg.522 se.513.℄. Hamilton then gives brief mention ofthis general �rst degree method in se.514, illustrating his use of the q = Sq+V q deomposition to e�et the solution, butdoes not go into depth on the method he believes he has found![2℄ By isomorphism, HR � HL , we onlude, (AB)� = B�A� =) (A0B0)� = B0�A0�, et. . . and together the rules in this tablegive us other things like, (gh)� = h�g�; (gh)0 = h0g0; 8 g; h;2 Xn, one we aept the usual assoiative and distributivelaws, whih are also assumed to apply to the operators, � and 0 , i.e. (g + h)� = g� + h�, and, (g + h)0 = g0 + h0.[3℄ Index pattern is ((1 + 2)((1 + 2)))((1 + 2)) = (111 + 112 + 121 + 122 + 211 + 212 + 221 + 222), on A�AA� only.[4℄ For proof (gh)� = h�g�; See misellanous alulations at the end of the Appendix.[5℄ Note also; A�1A2+(A�1A2)� = A1A�2+(A1A�2)�, et...i.e. S(A1A�2) = S(A2A�1) = S(A�1A2) = S(A�2A1), i.e. these expressionswhih resolve to salars an swap the onjugates througout, as well as permute the fators. Also hands, S(A�1A2) =S(A0�1 A02):[6℄ The norms an all be replaed by minus squares, e.g. jXj2 = �(X � X0)2 or jXj2 = �(V X)2, and so removed from theformulas entirely. But, they help remind us that these are salar fators, and, as suh, are useful, partiularly in writingthe denominator whih evaluates to a salar.[7℄ This an most easily be seen by re-writing, jG2j2 = G�2G2 = 2jB1j2jB3j2 � (B�2B1B�3B2B�1B3 +(B�2B1B�3B2B�1B3)�)=jB2j2[8℄ Index pattern arrangement is ((1+2+3)((1+2+3)))((1+2+3)) = 111 + 112 + 113 + 121 + 122 + 123 + 131 + 132 + 133 +211 + 212 + 213 + 221 + 222 + 223 + 231 + 232 + 233 + 311 + 312 + 313 + 321 + 322 + 323 + 331 + 332 + 333 , on A�AA�.[9℄ Division from left and from right are notated, AnB � A�1B, and B=A � BA�1. By onvention, the n and = take preedeneover the multipliation � in this paper, so that, AnB � CnD � (AnB) � (CnD). Also, note the hand transformation rules,(A=B)0 = B0nA0 and (AnB)0 = B0=A0; onjugation has the same e�et of reversing the divisor slash.[10℄ To ompare this result to that obtained using (54), note that, for any ; b quaternions, [  ; b ℄ = [ b� ;  ℄ , i.e. b� b =b�� b� , therfore, �jaj2b = �jaj2b� jaj2b�+ jaj2b� ; the �ve terms in the numerator then redue to four.[11℄ The term \distinguished bases" was introdued by Prof. Edwin Clark to desribe my partiular H 
 H 0 representation, inontrast to Floretions H 
 H , on si.math.researh:http://www.mathkb.om/Uwe/Forum.aspx/researh/2365/Hexpentaquaternions-a-two-hand-quaternion-algebra.[12℄ Stritly speaking, this spae reetion is aompanied by a time reversal, sine the salar omponent ips sign also underthe iLiR operation.[13℄ Although in our notation, A + A� is twie the salar part of A, we really referene the fat that the expression is realvalued, so ommutes, rather than emphasise it's omponent harateristi; we never extrat the vetor part, for example.However, the notation S(PQRS) is onvenient shorthand for disussing the invariane of salars under yli permutationof fators. And in our Appendix, we referene omponents only to verify and establish the general rules and formulas;after these results are aepted, they beome the starting points for rekoning, and we need not refer to the omponentsthereafter.[14℄ I regard it as an inelegane, or imperfetion, in quaternions, or rather in the state to whih it has been hitherto unfolded,whenever it beomes or seems to beome neessary to have reourse to x, y, z, et. William Rowan Hamilton (ed. Quoted ina letter from Tait to Cayley.) see \Quotes:" setion at http://en.wikipedia.org/wiki/Quaternion . This famous quotealso appears in the Prefae of Tait's \An Elementary Treatise on Quaternions". The original is from Hamilton's 1853\Letures on Quaternions", page 522, se:513, where the exat wording is, \I regard it, however, as an ineleganeand imperfetion in this alulus, or rather in the state to whih it has hitherto been unfolded, wheneverit beomes, or seems to beome, neessary to have reoure, in any suh way as this, to the resoures ofordinary algebra, for the solution of equations in quaternions." See Hamilton's Letures online at:http://dl.library.ornell.edu/gi-bin/ul.math/doviewer?did=05230001&seq=662&frames=0&view=50[15℄ Here we use ompressed notation(hr�h)l�hr for (h�Rh)�Lh�R, et.. an intermediate to rpn notation hrhxlhrx whih we also use in this paper.[16℄ i.e. for �rst powers, � h, the max irreduible onjugation is 1, for squares, � hh, the max irreduible onjugation is 3, andfor ubes, � hhh, the max irreduible onjugation is 5.[17℄ Reverse Polish Notation[18℄ Adapted from the Anient Akkadian poem, alled \The Epi of Gilgamesh," about a 3rd millenium B.C. king of Uruk.[19℄ In Revelation 10 : 6 and Daniel 12: 7 the gesture is used in referene to the measure of time; 12=7 = 1:714285;7 : : : patternof \ doubling " breaks, at the 6th deimal plae, i.e. 10�6; what would be 2� 28 = 56, is interrupted by the 7 following the5, instead of 6 there. See also Psalms 90� 4 and 2 Peter 3� 8 for unit of time a ube 103 and ubesquare 103 � 103 = 106.
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